Long-Lead Seasonal Prediction of Streamflow over the Upper Colorado River Basin: The Role of the Pacific Sea Surface Temperature and Beyond
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Long-Lead Seasonal Prediction of Streamflow over the Upper Colorado River Basin: The Role of the Pacific Sea Surface Temperature and Beyond

Filetype[PDF-5.58 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We have developed two statistical models for extended seasonal predictions of the Upper Colorado River Basin (UCRB) natural streamflow during April–July: a stepwise linear regression (reduced to a simple regression with one predictor) and a neural network model. Monthly, basin-averaged soil moisture, snow water equivalent (SWE), precipitation, and the Pacific sea surface temperature (SST) are selected as potential predictors. Pacific SST Predictors (PSPs) are derived from a dipole pattern over the Pacific (30°S–65°N) that is correlated with the lagging streamflow. For both models, the correlation between the hindcasted and observed streamflow exceeds 0.60 for lead times less than four months using soil moisture, SWE, and precipitation as predictors. This correlation is higher than that of an autoregression model (correlation ~0.50). Since these land-surface and atmospheric variables have no statistically significant correlations with the streamflow, PSPs are then incorporated into the models. The two models have a correlation of ~0.50 using PSPs alone for lead times from six to nine months, and such skills are probably associated with stronger correlation between SST and streamflow in recent decades. The similar prediction skills between the two models suggest a largely linear system between SST and streamflow. Four predictors together can further improve short-lead prediction skills (correlation ~0.80). Therefore, our results confirm the advantage of the Pacific SST information in predicting the UCRB streamflow with a long lead time, and can provide useful climate information for water supply planning and decisions.
  • Source:
    Journal of Climate (2021)
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1