Tropical Precipitation Evolution in a Buoyancy-Budget Framework
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Tropical Precipitation Evolution in a Buoyancy-Budget Framework

Filetype[PDF-2.34 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems.
  • Source:
    Journal of the Atmospheric Sciences, 78(2), 509-528
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1