Application of Unsupervised Learning Techniques to Identify Atlantic Tropical Cyclone Rapid Intensification Environments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Application of Unsupervised Learning Techniques to Identify Atlantic Tropical Cyclone Rapid Intensification Environments

Filetype[PDF-6.60 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Tropical cyclone (TC) track forecasts have improved in recent decades while intensity forecasts, particularly predictions of rapid intensification (RI), continue to show low skill. Many statistical methods have shown promise in predicting RI using environmental fields, although these methods rely heavily upon supervised learning techniques such as classification. Advances in unsupervised learning techniques, particularly those that integrate nonlinearity into the class separation problem, can improve discrimination ability for difficult tasks such as RI prediction. This study quantifies separability between RI and non-RI environments for 2004–16 Atlantic Ocean TCs using an unsupervised learning method that blends principal component analysis with k-means cluster analysis. Input fields consisted of TC-centered 1° Global Forecast System analysis (GFSA) grids (170 different variables and isobaric levels) for 3605 TC samples and five domain sizes. Results are directly compared with separability offered by operational RI forecast predictors for eight RI definitions. The unsupervised learning procedure produced improved separability over operational predictors for all eight RI definitions, five of which showed statistically significant improvement. Composites from these best-separating GFSA fields highlighted the importance of mid- and upper-level relative humidity in identifying the onset of short-term RI, whereas long-term, higher-magnitude RI was generally associated with weaker absolute vorticity. Other useful predictors included optimal thermodynamic RI ingredients along the mean trajectory of the TC. The results suggest that the orientation of a more favorable thermodynamic environment relative to the TC and midlevel vorticity magnitudes could be useful predictors for RI.
  • Source:
    Journal of Applied Meteorology and Climatology, 60(1), 119-138
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1