A Southeastern United States Warm Season Precipitation Climatology Using Unsupervised Learning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Southeastern United States Warm Season Precipitation Climatology Using Unsupervised Learning

Filetype[PDF-5.12 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Climate
  • Description:
    Agriculture in the southeastern United States (SEUS) is heavily reliant upon water resources provided by precipitation during the warm season (June–August). The convective and stochastic nature of SEUS warm season precipitation introduces challenges in terms of water availability in the region by creating localized maxima and minima. Clearly, a detailed and updated warm season precipitation climatology for the SEUS is important for end users reliant on these water resources. As such, a nonlinear unsupervised learning method (kernel principal component analysis blended with cluster analysis) was used to develop a NARR-derived SEUS warm season precipitation climatology. Three clusters resulted from the analysis, all of which strongly resembled the mean spatially (r > 0.9) but had widely variable precipitation magnitude, as one cluster denoted a mean pattern, one a dry pattern, and one a wet pattern. The clusters were related back to major SEUS warm season precipitation moderators (tropical cyclone landfall and the El Niño–southern oscillation (ENSO)) and revealed a clearer ENSO relationship when discriminating among the cluster patterns. Ultimately, these updated SEUS precipitation patterns can help end users identify areas of notable sensitivity to different climate phenomena, helping to optimize the economic use of these critical water resources.
  • Source:
    Climate, 11(1), 2
  • ISSN:
    2225-1154
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26