The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
An energetics tale of the 2022 mega-heatwave over central-eastern China
-
2023
-
-
Source: npj Climate and Atmospheric Science, 6(1)
Details:
-
Journal Title:npj Climate and Atmospheric Science
-
Personal Author:
-
NOAA Program & Office:
-
Description:It remains a major challenge to attribute heatwave’s lifecycle characteristics quantitatively to interwoven atmospheric and surface actions. By constructing a process-resolving, energetics-based attribution framework, here we quantitatively delineate the lifecycle of the record-breaking 2022 mega-heatwave over central-eastern China from a local energetics perspective. It is found that the cloudlessness induced radiative heating and atmospheric dynamics dominate the total energy buildup during the developing stage, while the land-atmosphere coupling and atmospheric horizontal advection act most effectively to sustain and terminate the heatwave, respectively. A reduction in anthropogenic aerosols provides a persistent positive contribution during the event, suggesting that pollution mitigation measures may actually increase the amplitudes of future heatwaves. With this framework, initial efforts are made to unravel culprits in a model’s sub-seasonal prediction of this mega-heatwave, demonstrating the framework’s potential for efficiently detecting the origins of climate extremes and quantitatively assessing the impacts of mitigation policies for sustainable development.
-
Source:npj Climate and Atmospheric Science, 6(1)
-
DOI:
-
ISSN:2397-3722
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: