Differential Urban Heat Vulnerability: The Tale of Three Alabama Cities
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Differential Urban Heat Vulnerability: The Tale of Three Alabama Cities

Filetype[PDF-7.84 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Urban Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Urban heat vulnerability varies within and across cities, necessitating detailed studies to understand diverse populations’ specific vulnerabilities. This research assessed urban heat vulnerability at block group level in three Alabama cities: Birmingham, Montgomery, and Auburn-Opelika. The vulnerability index combines exposure, sensitivity, and adaptive capacity subindices, incorporating Landsat 8 satellite-derived Land Surface Temperature (LST), demographic, and socioeconomic data using factor analysis and geospatial techniques. Results showed strong positive correlations between LST and impervious surfaces in Auburn-Opelika and Montgomery, with a moderate correlation in Birmingham. An inverse correlation between LST and Normalized Difference Vegetation Index was observed in all cities. High LST correlated with high population density, varying across cities. Birmingham and Montgomery’s central areas exhibited the highest heat exposure, influenced by imperviousness, population density, and socioeconomic factors. Auburn-Opelika had limited high heat exposure block groups, and high sensitivity did not always align with exposure. Correlations and cluster analysis were used to dissect the heat vulnerability index, revealing variations in contributing factors within and across cities. This study underscores the complex interplay of physical, social, and economic factors in urban heat vulnerability and emphasizes the need for location-specific research. Local governance, community engagement, and tailored interventions are crucial for addressing unique vulnerabilities in each urban context.
  • Keywords:
  • Source:
    Urban Science, 7(4), 121
  • DOI:
  • ISSN:
    2413-8851
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2