The Control of Plant and Soil Hydraulics on the Interannual Variability of Plant Carbon Uptake Over the Central US
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Control of Plant and Soil Hydraulics on the Interannual Variability of Plant Carbon Uptake Over the Central US

Filetype[PDF-2.88 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The interannual variability (IAV) of gross primary productivity (GPP) reflects the sensitivity of GPP to climate variations and contributes substantially to the variations and long‐term trend of the atmospheric CO2 growth rate. Analyses of three observation‐based GPP products indicate that their IAVs are consistently correlated to terrestrial water storage anomaly over the central US, where episodic droughts occur. A land surface model explicitly representing plant hydraulics and groundwater capillary rise with an adequate soil hydraulics well captures the observed GPP IAV. Our sensitivity experiments indicate that, without representations of plant hydraulics and groundwater capillary rise or using an alternative soil hydraulics, the land model substantially overestimates the GPP IAV and the GPP sensitivity to water in the central US. This study strongly suggests the use of the van Genuchten water retention model to replace the most commonly used Brooks–Corey model, which generally produces too strong matric suction of soil water especially in dry conditions, in land surface modeling. This study highlights the importance of plant and soil hydraulics and surface–groundwater interactions to Earth system modeling for projections of future climates that may experience more intense and frequent droughts.
  • Source:
    Journal of Geophysical Research: Atmospheres, 127(9)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1