Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion

Filetype[PDF-7.23 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Hydrology and Earth System Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Droughts are expected to become more frequent and severe under climate change, increasing the need for accurate predictions of plant drought response. This response varies substantially, depending on plant properties that regulate water transport and storage within plants, i.e., plant hydraulic traits. It is, therefore, crucial to map plant hydraulic traits at a large scale to better assess drought impacts. Improved understanding of global variations in plant hydraulic traits is also needed for parameterizing the latest generation of land surface models, many of which explicitly simulate plant hydraulic processes for the first time. Here, we use a model–data fusion approach to evaluate the spatial pattern of plant hydraulic traits across the globe. This approach integrates a plant hydraulic model with data sets derived from microwave remote sensing that inform ecosystem-scale plant water regulation. In particular, we use both surface soil moisture and vegetation optical depth (VOD) derived from the X-band Japan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; collectively AMSR-E). VOD is proportional to vegetation water content and, therefore, closely related to leaf water potential. In addition, evapotranspiration (ET) from the Atmosphere–Land Exchange Inverse (ALEXI) model is also used as a constraint to derive plant hydraulic traits. The derived traits are compared to independent data sources based on ground measurements. Using the K-means clustering method, we build six hydraulic functional types (HFTs) with distinct trait combinations – mathematically tractable alternatives to the common approach of assigning plant hydraulic values based on plant functional types. Using traits averaged by HFTs rather than by plant functional types (PFTs) improves VOD and ET estimation accuracies in the majority of areas across the globe. The use of HFTs and/or plant hydraulic traits derived from model–data fusion in this study will contribute to improved parameterization of plant hydraulics in large-scale models and the prediction of ecosystem drought response.
  • Keywords:
  • Source:
    Hydrology and Earth System Sciences, 25(5), 2399-2417
  • DOI:
  • ISSN:
    1607-7938
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1