Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis

Filetype[PDF-3.37 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We have developed a canonical correlation analysis (CCA) model for improving seasonal winter rainfall prediction. It uses the anomalies of sea surface temperature (SST), vertically integrated vapor transport (IVT), and geopotential height at 250 hPa (Z250) in October and November, respectively, as the predictors for winter rainfall prediction. These predictors represent the processes that influence winter rainfall over California as documented in the literature, but their potential for improving predictability was previously unclear. This statistical model shows prediction skills higher than those of the baseline autoregressive model, the CCA‐based prediction model using only the SST anomalies, and the dynamic predictions by the North American Multi‐Model Ensemble (NMME). Averaged over California, the Pearson correlation (R) is 0.64, root mean squared error (RMSE) is 0.65, and Heidke skill score (HSS) is 0.42 when the CCA‐based model is initialized by the three predictor fields (SST, IVT, and Z250) in November. These skills are higher than those of the NMME predictions initialized in November (R, RMSE, and HSS are 0.30, 0.83, and 0.15, respectively) and those of the autoregressive baseline (R, RMSE, and HSS are 0.10, 0.79, and 0.08, respectively). Hindcasts of winter rainfall initialized by October observations show R, RMSE, and HSS of 0.53, 0.81, and 0.39, respectively, also higher than those of the NMME seasonal prediction initialized in October (0.32, 0.79, and 0.22 for R, RMSE, and HSS, respectively) and the autoregressive model (0.30, 0.75, and 0.16 for R, RMSE, and HSS, respectively).
  • Source:
    Journal of Geophysical Research: Atmospheres, 126(17)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1