The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Effects of Solar Intrusion on the Calibration of the Metop-C Advanced Microwave Sounding Unit-A2 Channels
-
2024
-
Source: Remote Sensing, 16(5), 864
Details:
-
Journal Title:Remote Sensing
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study presents our first discovery about two abnormal problems in the blackbody calibration target associated with the antenna unit A2 in the Metop-C AMSU-A instrument. The problems include the anomalous patterns in both blackbody kinetic temperature Tw and radiative temperature (measured in warm count or Cw), and the time lag between orbital cycles of Tw and Cw. This study further determines solar intrusion as the root cause of the anomalous pattern problem. According to our analysis, solar illumination is constantly observed during each orbit near the satellite terminator, causing anomalous changes in Cw and Tw, characterized by sudden and abnormal increases typically for more than 16 min. The resultant maximum antenna temperature errors due to abnormal increases in Cw are approximately in the range from 0.15 K to 0.25 K, while the maximum errors due to the abnormal increase in Tw are in the range from 0.04 K to 0.07 K, varying with orbit, season, and channel. The time shift feature is characterized with a changeable time lag with the season in the Tw orbital cycle in comparison with the Cw cycle. The longest time lag up to about 18 min occurs in summer through early fall, while the time lag can be decreased down to about 9 min in winter through early spring. Hence, this study underscores the imperative need for future research to rectify radiance errors and reconstruct a more accurate long-term Metop-C AMSU-A radiance data set for channels 1 and 2, crucial for climate studies.
-
Keywords:
-
Source:Remote Sensing, 16(5), 864
-
DOI:
-
ISSN:2072-4292
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: