U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Evaluating Atmospheric Correction Algorithms Applied to OLCI Sentinel-3 Data of Chesapeake Bay Waters



Details

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Satellite remote sensing permits large-scale monitoring of coastal waters through synoptic measurements of water-leaving radiance that can be scaled to relevant water quality metrics and in turn help inform local and regional responses to a variety of stressors. As both the incident and water-leaving radiance are affected by interactions with the intervening atmosphere, the efficacy of atmospheric correction algorithms is essential to derive accurate water-leaving radiometry. Modern ocean color satellite sensors such as the Ocean and Land Colour Instrument (OLCI) onboard the Copernicus Sentinel-3A and -3B satellites are providing unprecedented operational data at the higher spatial, spectral, and temporal resolution that is necessary to resolve optically complex coastal water quality. Validating these satellite-based radiance measurements with vicarious in situ radiometry, especially in optically complex coastal waters, is a critical step in not only evaluating atmospheric correction algorithm performance but ultimately providing accurate water quality metrics for stakeholders. In this study, a regional in situ dataset from the Chesapeake Bay was used to evaluate the performance of four atmospheric correction algorithms applied to OLCI Level-1 data. Images of the Chesapeake Bay are processed through a neural-net based algorithm (C2RCC), a spectral optimization-based algorithm (POLYMER), an iterative two-band bio-optical-based algorithm (L2gen), and compared to the standard Level-2 OLCI data (BAC). Performance was evaluated through a matchup analysis to in situ remote sensing reflectance data. Statistical metrics demonstrated that C2RCC had the best performance, particularly in the longer wavelengths (>560 nm) and POLYMER contained the most clear day coverage (fewest flagged data). This study provides a framework with associated uncertainties and recommendations to utilize OLCI ocean color data to monitor the water quality and biogeochemical dynamics in Chesapeake Bay.
  • Keywords:
  • Source:
    Remote Sensing, 14(8), 1881
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:886db73d4df37a8a355183d2f0f2bc60fdba575452bc8bf1de1314e863692a6fe4b62841a089b8aa5385a9b10a9be4b2e7aae519cbdff0879e08733064518dba
  • Download URL:
  • File Type:
    Filetype[PDF - 3.18 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.