U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Baroclinic effects on the distribution of tropical cyclone eye subsidence



Details

  • Journal Title:
    Frontiers in Earth Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Solutions of the secondary (transverse) circulation equation for an axisymmetric, gradient balanced vortex are used to better understand the distribution of subsidence in the eye of a tropical cyclone. This secondary circulation equation is derived using both the physical radius coordinate r and the potential radius coordinate R. In the R-coordinate version, baroclinic effects are implicit in the coordinate transformation and are recovered in the final step of transforming the solution for the streamfunction Ψ back from R-space to r-space. Two types of elliptic problems for Ψ are formulated: 1) the full secondary circulation problem, which is formulated on 0 ≤ R < ∞, with the diabatic forcing due to eyewall convection appearing on the right-hand side of the elliptic equation; 2) the restricted secondary circulation problem, which is formulated on 0 ≤ R ≤ Rew, where the constant Rew is the potential radius of the inside edge of the eyewall, with no diabatic forcing but with the streamfunction specified along R = Rew. The restricted secondary circulation problem can be solved semi-analytically for the case of vertically sheared, Rankine vortex cores. The solutions identify the conditions under which large values of radial and vertical advection of θ are located in the lower troposphere at the outer edge of the eye, thereby producing a warm-ring thermal structure.
  • Keywords:
  • Source:
    Frontiers in Earth Science, 10
  • DOI:
  • ISSN:
    2296-6463
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:055fc29eb45d7aea541877cc332dd5ec0c8bf1b9b7ddf422d428e61760aa037e69cb36f3302707aa04bf2c1260cabfee9179da7265141c0fdb1b2546b8eeada6
  • Download URL:
  • File Type:
    Filetype[PDF - 4.07 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.