Tropical instability wave modulation of chlorophyll-a in the Equatorial Pacific
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Tropical instability wave modulation of chlorophyll-a in the Equatorial Pacific

Filetype[PDF-5.79 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Scientific Reports
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The global daily gap-free chlorophyll-a (Chl-a) data derived using the data interpolating empirical orthogonal functions (DINEOF) technique from observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) in 2020 and the in situ measurements at the Tropical Ocean Atmosphere (TAO) moorings are used to characterize and quantify the biological variability modulated by the tropical instability wave (TIW). Our study aims to understand how ocean physical processes are linked to biological variability. In this study, we use the TAO in situ measurements and the coincident VIIRS Chl-a data to identify the mechanism that drives ocean biological variability corresponding to the TIW. Satellite observations show that the TIW-driven Chl-a variability stretched from 90°W to 160°E in the region. The enhanced Chl-a pattern propagated westward and moderately matched the cooler sea surface temperature (SST) patterns in the Equatorial Pacific Ocean. In fact, the Chl-a variation driven by the TIW is about ± 30% of mean Chl-a values. Furthermore, the time series of Chl-a at 140°W along the equator was found to be in phase with sea surface salinity (SSS) at 140°W along the equator at the TAO mooring since late May 2020. The cross-correlation coefficients with the maximum magnitude between Chl-a and SST, Chl-a and SSS, and Chl-a and dynamic height were –0.46, + 0.74, and –0.58, respectively, with the corresponding time lags of about 7 days, 1 day, and 8 days, respectively. The different spatial patterns of the cooler SST and enhanced Chl-a are attributed to the phase difference in Chl-a and SST. Indeed, a Chl-a peak normally coincided with a SSS peak and vice versa. This could be attributed to the consistency in the change in nutrient concentration with respect to the change of SSS. The vertical distributions of the temperature and salinity at 140°W along the equator reveal that the TIW leads to changes in both salinity and nutrient concentrations in the sea surface, and consequently drives the Chl-a variability from late May until the end of the year 2020.
  • Keywords:
  • Source:
    Scientific Reports, 11(1)
  • DOI:
  • ISSN:
    2045-2322
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1