Monitoring Water Quality Indicators over Matagorda Bay, Texas, Using Landsat-8
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Monitoring Water Quality Indicators over Matagorda Bay, Texas, Using Landsat-8

Filetype[PDF-4.89 MB]



Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Remote sensing datasets offer a unique opportunity to observe spatial and temporal trends in water quality indicators (WQIs), such as chlorophyll-a, salinity, and turbidity, across various aquatic ecosystems. In this study, we used available in situ WQI measurements (chlorophyll-a: 17, salinity: 478, and turbidity: 173) along with Landsat-8 surface reflectance data to examine the capability of empirical and machine learning (ML) models in retrieving these indicators over Matagorda Bay, Texas, between 2014 and 2023. We employed 36 empirical models to retrieve chlorophyll-a (12 models), salinity (2 models), and turbidity (22 models) and 4 ML families—deep neural network (DNN), distributed random forest, gradient boosting machine, and generalized linear model—to retrieve salinity and turbidity. We used the Nash–Sutcliffe efficiency coefficient (NSE), correlation coefficient (r), and normalized root mean square error (NRMSE) to assess the performance of empirical and ML models. The results indicate that (1) the empirical models displayed minimal effectiveness when applied over Matagorda Bay without calibration; (2) once calibrated over Matagorda Bay, the performance of the empirical models experienced significant improvements (chlorophyll-a—NRMSE: 0.91 ± 0.03, r: 0.94 ± 0.04, NSE: 0.89 ± 0.06; salinity—NRMSE: 0.24 ± 0, r: 0.24 ± 0, NSE: 0.06 ± 0; turbidity—NRMSE: 0.15 ± 0.10, r: 0.13 ± 0.09, NSE: 0.03 ± 0.03); (3) ML models outperformed calibrated empirical models when used to retrieve turbidity and salinity, and (4) the DNN family outperformed all other ML families when used to retrieve salinity (NRMSE: 0.87 ± 0.09, r: 0.49 ± 0.09, NSE: 0.23 ± 0.12) and turbidity (NRMSE: 0.63± 0.11, r: 0.79 ± 0.11, NSE: 0.60 ± 0.20). The developed approach provides a reference context, a structured framework, and valuable insights for using empirical and ML models and Landsat-8 data to retrieve WQIs over aquatic ecosystems. The modeled WQI data could be used to expand the footprint of in situ observations and improve current efforts to conserve, enhance, and restore important habitats in aquatic ecosystems.
  • Keywords:
  • Source:
    Remote Sensing, 16(7), 1120
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1