A Novel Framework for Parametric Analysis of Coastal Transition Zone Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Novel Framework for Parametric Analysis of Coastal Transition Zone Modeling

Filetype[PDF-25.29 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    JAWRA Journal of the American Water Resources Association
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Vulnerability of coastal regions to extreme events motivates an operational coupled inland‐coastal modeling strategy focusing on the coastal transition zone (CTZ), an area between the coast and upland river. To tackle this challenge, we propose a top‐down framework for investigating the contribution of different processes to the hydrodynamics of CTZs with various geometrical shapes, different physical properties, and under several forcing conditions. We further propose a novel method, called tidal vanishing point (TVP), for delineating the extent of CTZs through the upland. We demonstrate the applicability of our framework over the United States East and Gulf coasts. We categorize CTZs in the region into three classes, namely, without estuary (direct river–coast connection), triangular‐, and trapezoidal‐shaped estuary. The results show that although semidiurnal tidal constituents are dominant in most cases, diurnal tidal constituents become more prevalent in the river segment as the discharge increases. Also, decreasing the bed roughness value promotes more significant changes in the results than increasing it by the same value. Additionally, the estuary promotes tidal energy attenuation and consequently decreases the reach of tidal signals through the upland. The proposed framework is generic and extensible to any coastal region.
  • Keywords:
  • Source:
    JAWRA Journal of the American Water Resources Association, 58(1), 86-103
  • DOI:
  • ISSN:
    1093-474X;1752-1688;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1