Perturbing Parameters to Understand Cloud Contributions to Climate Change
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Perturbing Parameters to Understand Cloud Contributions to Climate Change

Filetype[PDF-6.35 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here. The spread in the total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback components. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results. Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0) and has a smaller total cloud feedback (0.56 W m−2 K−1) as compared to CAM6.0 (0.81 W m−2 K−1) owing primarily to reductions in low clouds over the tropics and midlatitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural details in CAM6.
  • Keywords:
  • Source:
    Journal of Climate, 37(1), 213-227
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1