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ABSTRACT: The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed
parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here.
The spread in the total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across
the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the
high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We
evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback compo-
nents. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results.
Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud
feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a
more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0) and has a smaller total cloud feedback
(0.56 W m22 K21) as compared to CAM6.0 (0.81 W m22 K21) owing primarily to reductions in low clouds over the tropics
and midlatitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural
details in CAM6.
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1. Introduction

Constraining equilibrium climate sensitivity (ECS) is a crucial
step to quantifying warming from anthropogenic emissions.
However, doing so has proven difficult, with little change in
the estimated ECS range from 1979 to the present (National
Research Council 1979; Sherwood et al. 2020; Forster et al.
2021). Global climate models (GCMs) are useful for under-
standing the climate’s response to forcing. However, the spread
in ECS values across models remains large and has, in fact, in-
creased between CMIP5 and CMIP6. From CMIP5 to CMIP6,
the upper ECS estimate increased from 4.7 to 5.6 K and the
multimodel mean ECS increased from 3.3 to 3.9 K. Further,
10 CMIP6 models have an ECS greater than that of the largest
CMIP5 model (4.7 K) (Zelinka et al. 2020).

ECS depends on both the radiative forcing and the radia-
tive feedback. The change in spread in ECS from CMIP5 to
CMIP6 is the result of different combinations of radiative
forcing and feedback (Zelinka et al. 2020). The radiative feed-
back includes contributions from both clear-sky and cloud
feedbacks. The spread across models and observations is
dominated by the spread in cloud feedbacks (Sherwood et al.

2020; Zelinka et al. 2020). Therefore, constraining cloud feed-
backs is key to constraining ECS.

The relationship between ECS, forcing, and feedback can
be conceptualized using the top-of-the-atmosphere (TOA)
energy budget, which is given by

DN 5 DF 1 lDT, (1)

where DN is the net top-of-the-atmosphere radiative flux
anomaly (positive down), DF is the radiative forcing, l is the
total radiative feedback parameter, and DT is the global-mean
near-surface air temperature response. We define ECS by as-
suming equilibrium (DN 5 0) and a radiative forcing which
corresponds to a doubling of CO2, given by

ECS ; DT2xCO2
52

DF2xCO2

l
: (2)

From Eq. (2), it is clear that there is a close, inverse relationship
between ECS and radiative feedbacks. In practice, calculating
ECS requires running a 2xCO2 or 4xCO2 GCM simulation to
equilibrium. However, other definitions of climate sensitivity
also exist, such as effective climate sensitivity and transient cli-
mate sensitivity, and tend to be correlated with ECS across
GCMs (Gregory et al. 2004; Rugenstein and Armour 2021).
The radiative feedback l can be further decomposed into
cloud radiative feedbacks and the noncloud radiative feed-
backs, given by

l 5 lcloud 1 lnoncloud: (3)

The noncloud feedbacks include the Planck, water vapor,
lapse rate, and surface albedo feedbacks. We focus on cloud
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feedbacks because their uncertainty is larger than noncloud
feedbacks (Sherwood et al. 2020).

The total cloud feedback is composed of various cloud changes
with warming. Here, we separate cloud feedbacks into both their
shortwave (SW) and longwave (LW) contributions and into six
cloud feedback components as in Sherwood et al. (2020) [also
called the World Climate Research Programme (WCRP) assess-
ment]: high-cloud altitude, tropical marine low cloud, tropical an-
vil cloud area, land cloud amount, midlatitude marine low-cloud
amount, and high-latitude low-cloud optical depth. These six
cloud feedback components are the result of known processes,
and Sherwood et al. (2020) assess their values and spreads using
multiple lines of evidence. The high-cloud altitude feedback is a
robustly positive feedback across lines of evidence (Sherwood
et al. 2020) and across GCMs (Zelinka et al. 2022). The high-
cloud altitude feedback results from cloud-top heights rising
nearly isothermally which means that LW emission from cloud
tops changes less than the increased surface emission, resulting
in greater LW flux divergence and enhanced warming (i.e., a
positive feedback) (Hartmann and Larson 2002; Zelinka and
Hartmann 2010). The tropical marine low-cloud feedback is es-
timated to be a positive SW feedback resulting from reduced
low-cloud amounts in the tropics with warming (Bony and
Dufresne 2005; Klein et al. 2017). The tropical anvil cloud area
feedback comes from a reduction in the area of tropical anvil
clouds with warming. This reduced area has compensating LW
and SW feedbacks, but observational evidence suggests the LW
effect is greater than the SW effect for a net negative feedback
(Hartmann et al. 2001; Williams and Pierrehumbert 2017). The
land cloud feedback is expected to produce a positive feedback
of smaller magnitude than any of the three feedback contribu-
tions already described. The land cloud feedback is the result of
reduced cloudiness due to reduced relative humidity over land
(Bretherton et al. 2014). Low-cloud reductions dominate the ra-
diative effect of the land cloud feedback, resulting in a positive
SW feedback (Kamae et al. 2016). Midlatitude low-cloud feed-
backs are expected to provide a positive SW feedback due to re-
ductions in low clouds (Kay et al. 2014; Zhai et al. 2015; McCoy
et al. 2017). The high-latitude low-cloud optical depth feedback
results from competing influences on high-latitude low-cloud
optical depths with warming and therefore has an estimated
feedback of 0 W m22 K21 but with substantial spread (Tan et al.
2016; Ceppi et al. 2016). These six components are separate from
one another and sum to the total feedback if the unassessed com-
ponent is small, which it is in most CMIP5 and CMIP6 models
(Zelinka et al. 2022).

Focusing on GCMs, the spread in total cloud feedbacks has
increased from CMIP5 to CMIP6, with an increase in spread in
the midlatitude low-cloud amount (and scattering) feedback
from CMIP5 to CMIP6 (Zelinka et al. 2020). The CMIP5 and
CMIP6 multimodel mean cloud feedbacks (total cloud feedback
and its six components) all fall within the WCRP assessed
ranges, but there is substantial intermodel spread across the to-
tal cloud feedback and most of the six cloud feedback compo-
nents. Further, the tropical marine low-cloud feedback tends to
be smaller (a smaller positive feedback), and the tropical marine
anvil cloud area feedback tends to be larger (a smaller negative
feedback) than the WCRP assessed range. CMIP5 and CMIP6

models whose assessed feedbacks compared most favorably to
the WCRP assessed values had total cloud feedback estimates
of 0.4–0.6 W m22 K21 and ECS estimates of 3–4 K (Zelinka
et al. 2022).

Despite the tremendous impact of clouds on Earth’s climate,
their subgrid size requires cloud processes to be parameterized
in GCMs. Here, we evaluate the sensitivity of cloud feedbacks
to atmospheric model parameter values in the Community At-
mosphere Model version 6, CAM6 (Danabasoglu et al. 2020)
using a perturbed parameter ensemble (PPE). An advantage of
using a PPE is that we are able to use parameter sensitivity to
identify processes setting the spread in cloud feedbacks. We use
the CAM6 PPE and CMIP6 models to address the following
questions:

1) How does the spread in cloud feedbacks across the
CAM6 PPE compare to the spread in cloud feedbacks
across CMIP6 models?

2) What is the sensitivity of cloud feedbacks to parameter
values in CAM6?

3) Can the total cloud feedback be constrained using the
CAM6 PPE?

Additionally, there have been substantial fluctuations in the
cloud feedback and corresponding ECS values across genera-
tions of the Community Atmosphere Model (CAM). The cloud
feedback and ECS values increased from CAM5 to CAM6
(Gettelman et al. 2019). However, we find here that the CAM6
PPE default simulation (CAM6.3) has lower cloud feedback
and ECS values than previous CAM6 simulations (CAM6.0).
Therefore, we also investigate the following questions:

4) Are changes in parameter values (tuning) responsible for
the increase in cloud feedback from CAM5 to CAM6?

5) Why does the CAM6 PPE default simulation have a lower
cloud feedback than previous CAM6 configuration?

The CMIP, AMIP, and PPE data are described in section 2.
A description of the cloud radiative feedback calculation is
also provided in section 2. Questions 1–5 are addressed se-
quentially in sections 3–7. For interested readers, we discuss
the relationship between the CAM6 PPE used here and a ver-
sion that is tuned based on paleoclimate evidence in section 8.
We discuss and conclude in section 9.

2. Data description

a. PPE

The CAM6 PPE is available for use (Eidhammer et al.
2022), is described in detail in T. Eidhammer et al. (2023, un-
published manuscript), and is briefly summarized here. The
CAM6 PPE consists of 262 CAM6 simulations.1 The simula-
tions are atmosphere-only simulations run with CAM6.3 with
imposed climatological SST and sea ice cover (using the
F2000climo component set of the model). The prescribed SST
and sea ice fields have an annual cycle but no interannual

1 In total, 263 simulations were run, but 1 was discarded due to
numerical instability.
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variability. One simulation is considered a “default” simula-
tion because it uses the parameter values typical of CAM6.
The remaining 261 simulations differ in 45 atmospheric pa-
rameter values across parameterizations for cloud and aerosol
effects. The parameter ranges are chosen by expert judgment
to span physical process limits. The chosen parameter ranges
are intended to cover the plausible range of realistic values
based on expert assessment and thus span the range of para-
metric uncertainty. Parameter values are selected using Latin
hypercube sampling, meaning that the parameters are varied
simultaneously, but randomly and independently from one
another (McKay et al. 2000). Latin hypercube sampling en-
sures that for each parameter, the range of possible values is
evenly sampled. Here, we show results from variations in 43
parameters.2 For each of the 262 PPE simulations, we use two
experiments: a control or present-day simulation, denoted
“PD,” and a warm simulation with a uniform 4-K SST warm-
ing, denoted “SST4K.” All PPE simulations are run with the
CFMIP observation simulator package (COSP) turned on,
which produces joint histograms of cloud-top pressure and
cloud optical depth in each simulation (Bodas-Salcedo et al.
2011). All PPE simulations are run for 3 years each. Monthly
mean model output is used throughout.

The spread in feedbacks across the CAM6 PPE is sensitive to
the range of each parameter value chosen in designing the CAM6
PPE. Although the parameter values are chosen by expert judg-
ment to within physical process limits, combinations of different
parameter values need not yield realistic climates (Stainforth et al.
2005). To address this, we take a subset of the 206 PPE simula-
tions based on TOA, a radiative balance constraint. None of the
CAM6 PPE simulations have been tuned based on TOA radia-
tive imbalance. The default PD simulation has a TOA radiative
imbalance of 24.0 W m22. The default SST4K simulation has a
TOA radiative imbalance of 3.5 W m22. Here and throughout

the paper, we analyze only the 206 simulations whose TOA radia-
tive imbalance falls within 15 W m22 of the default simulation for
both the PD and SST4K experiments. That is, we only keep simu-
lations whose TOA imbalance is between 219 and 11 W m22 in
the PD experiment and whose TOA imbalance is between211.5
and 18.5 W m22 in the SST4K experiment. The TOA radiative
imbalance for each simulation and experiment is shown in Fig. 1.
The 15 W m22 threshold is chosen based on the data in Fig. 1
somewhat subjectively, with the intention of eliminating data in
the tails of the TOA imbalance distribution. We also evaluate our
subset using the mean-state cloud error for each simulation’s PD
experiment. To do so, we use an aggregated scalar error metric of
the impact of cloud errors on TOA radiation in the base state,
ENET (Klein et al. 2013), with details as in Zelinka et al. (2022).
Reassuringly, we find that our subset eliminates the simulations
with largest mean-state cloud errors (Fig. 1).

b. Feedback calculations

In the CAM6 PPE, the total radiative feedback is calcu-
lated as the ratio of net downward TOA flux DN to surface
warming DT. We calculate cloud radiative feedbacks using
the cloud radiative kernel technique with output from the PD
and SST4K simulations. In general, cloud radiative kernels
calculate the sensitivity of TOA radiation to perturbations in
cloud fraction. Here, we calculate cloud radiative feedbacks
using joint-histogram kernels from Zelinka et al. (2012). The
kernels of Zelinka et al. (2012) are constructed from joint his-
tograms of cloud-top pressure and optical depth to separate
cloud-radiative effects into contributions by different cloud
types.

The kernels calculate SW and LW cloud feedbacks sepa-
rately for various cloud-top pressure and cloud optical depth
values. This allows for decomposition of the cloud feedback
into SW and LW contributions and into the six cloud feed-
back components of Sherwood et al. (2020), which are calcu-
lated in the CAM6 PPE using the methods of Zelinka et al.
(2022). Obscuration effects, the hiding and revealing low

FIG. 1. Top-of-atmosphere radiative imbalance in each of the 262 PPE simulations for both the (left) PD and (right)
SST4K experiments. The dashed horizontal line goes through the default value, and the black lines are 15 W m22

away from the default. Dot colors correspond to the ENET value in the PD simulation. The simulations in the subset
used in the forthcoming analysis are encircled in black.

2 Not 45 because two pairs of parameter values are perturbed si-
multaneously: CLUBBC6rt/C6thl and CLUBBC6rtb/C6thlb.
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clouds by changes in high clouds, are accounted for. Ascent
and descent regions are defined by the sign of vertical velocity
at 500 hPa at that location in each simulation. The cutoff be-
tween high and low clouds is 680 hPa. The high-cloud altitude
and land cloud amount feedbacks are calculated globally. The
tropical marine low-cloud and tropical anvil cloud area feed-
backs are calculated between 308S and 308N. The midlatitude
low-cloud amount feedback is calculated between 308 and
608N and between 308 and 608S. The high-latitude low-cloud
optical depth feedback is calculated between 408 and 708N
and between 408 and 708S. Amount, altitude, and optical
depth feedbacks linearly sum to the total feedback, so the
cloud feedback components are separate from one another
and sum to the total cloud feedback when the unassessed
component is included.

c. CMIP6, AMIP, and assessed values

We compare total radiative feedbacks, total cloud feedbacks,
and SW and LW cloud feedbacks in the CAM6 PPE to those
in CMIP6 models. Feedbacks from coupled experiments are
calculated using the CMIP6 preindustrial control (“piControl”)
and abrupt CO2 quadrupling (“abrupt-4xCO2”) experiments;
we refer to these as CMIP6. Feedbacks from atmosphere-only
experiments are calculated using “amip” (CMIP DECK) and
“amip-p4K” (CFMIP, uniform 4-K warming) experiments for
model years 1983–2008, referred to as AMIP.3 Values for the

feedbacks are provided by Mark Zelinka’s “cmip56_forcing_
feedback_ecs” (https://github.com/mzelinka/cmip56_forcing_
feedback_ecs) and “assessed_cloud_fbks” (https://github.com/
mzelinka/assessed-cloud-fbks) GitHub repositories, as de-
scribed by Zelinka et al. (2020, 2022). The corresponding calcu-
lations are repeated for the CAM6 PPE following the methods
of Zelinka et al. (2020, 2022). CESM2 (CMIP) is not included
in the six cloud feedback components of Zelinka et al. (2022)
because one of the needed variables (clisccp) is not available
for the piControl simulation.

3. Spread in cloud feedbacks

We begin by comparing the distribution of total cloud radi-
ative feedbacks between the subset of 206 CAM6 PPE simula-
tions and the CMIP6 models. The spread across the CMIP6
models represents structural uncertainty; each model solves
different equations with different numerical methods. On the
other hand, the spread across the CAM6 PPE represents
parametric uncertainty; the only difference between members
is the parameter values. The total feedback, along with the to-
tal cloud feedback and its SW and LW components, is shown
in Fig. 2. The CAM6 PPE default simulation has a smaller
(more negative) total feedback and a smaller (less positive)
total cloud feedback than the CESM2-coupled experiment
(Fig. 2; compare black square and black circle). This is an im-
portant and unexpected finding which we discuss further in
section 7. We also find that the spread across total cloud feed-
backs in the CAM6 PPE and CMIP6 models are comparable
to one another. There is no a priori expectation for the
CAM6 PPE spread to be similar to the CMIP6 spread. The

FIG. 2. Spread in the global-mean radiative feedback across CMIP6 models (yellow) and
across PPE (blue). The total radiative feedbacks, the cloud-radiative feedbacks, SW cloud-
radiative feedbacks, and LW cloud-radiative feedbacks are shown from bottom to top. The black
square over the AMIP models denotes the CESM2 values, and the black dot over the CAM6
PPE indicates the CAM6 PPE default simulation value.

3 We use 1983–2008 values instead of the full 1979–2014 because
that is what is used in Zelinka et al. (2022), which was done for
comparison with observations.
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two ensembles are entirely different with different numbers
of members and different sources of spread (i.e., systematic
parameter changes in the CAM6 PPE and opportunistic and
structural differences across CMIP6).

To compare the processes setting the comparable spreads
in cloud feedbacks across the CAM6 PPE simulations and
CMIP6 models, we further decompose cloud feedbacks into
1) their shortwave (SW) and longwave (LW) contributions
and 2) into the six cloud feedback components of Sherwood
et al. (2020). Other decompositions are possible; we use the
SW and LW decomposition because of its simplicity and the
six cloud feedback components of Sherwood et al. (2020) for
comparison with the recent work (e.g., Zelinka et al. 2022).
The SW and LW contributions to the cloud feedback are
shown in Fig. 2 and compare favorably to one another. A bar
graph with the mean and standard deviation of these data is
shown in Fig. S1 in the online supplemental material.

The total cloud and the six components of Sherwood et al.
(2020) are shown in Fig. 3 for the CMIP6 models, AMIP mod-
els, and CAM6 PPE. The 1s range of each component in the
WCRP assessment by Sherwood et al. (2020) is also included
for comparison. A bar graph with the mean and standard de-
viation of these data is shown in Fig. S2. The AMIP models
are more similar to the CAM6 PPE simulations than the

CMIP6 models because the AMIP and CAM6 PPE simulations
are all atmosphere-only with imposed uniform 4-K warming.
Therefore, we focus on the comparison between CAM6 PPE
and AMIP simulations.

We begin by comparing the mean of the cloud feedback
components between the CAM6 PPE and the AMIP models.
The mean total cloud feedback is larger in the CAM6 PPE
than in the AMIP models. This larger total cloud feedback is
the consequence of much larger high-cloud altitude feedback,
which is partially compensated by a smaller mean tropical ma-
rine low-cloud feedback. The other four feedbacks have mean
values which fall within the assessed 1s range of Sherwood
et al. (2020). Additionally, the mean unassessed cloud feed-
back component is close to zero in the PPE, but this compo-
nent is the least understood, and it is not known whether or
not it should be zero. The AMIP models have very similar
mean cloud feedbacks to the CMIP6 models.

We next compare the spread in the cloud feedbacks across the
CAM6 PPE and AMIP models. The range (largest minus small-
est value) in the total cloud feedback is comparable between
AMIP (0.85Wm22 K21) and the CAM6 PPE (1.22Wm22 K21).
This is reflected in each of the six cloud feedback components,
which have similar ranges across the two ensembles. The AMIP
models have very similar spreads in cloud feedbacks to the

FIG. 3. Comparison of total cloud feedbacks, unassessed cloud feedbacks, and cloud feedback components in
WCRP assessment (orange), CMIP6 models (yellow), AMIP models (green), and the CAM6 PPE (blue). The range
of the WCRP-assessed feedbacks represents the 1s spread. The black star in the CMIP total cloud feedback row de-
notes the CESM2 (CMIP) value. The black squares in the AMIP rows denote the CESM2 (AMIP) values, and the
bar going through it in the total cloud feedback row covers the interannual spread. The black triangle in the AMIP to-
tal feedback row denotes the simulation of CAM6.0 forced with F2000climo SST (see text for details). The black dots
in the CAM6 PPE rows denote the CAM6 PPE default simulation values, which use CAM6.3 and F2000climo, and
the black bar going through it in the total cloud feedback row covers the interannual spread in a 12-yr version of the
CAM6 PPE default simulation.
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CMIP6 models. However, the CMIP6 range for the high-latitude
low-cloud optical depth feedback is much smaller than the
CAM6PPE range and also much smaller than the assessed 1s
range of Sherwood et al. (2020).

Overall, the comparable spreads in the total cloud feedback
between the CAM6 PPE, CMIP6, and AMIP models is the re-
sult of comparable spreads in SW and LW cloud feedbacks
and of comparable spreads in the six cloud feedback compo-
nents. Further, no individual component of the cloud feed-
back is controlling the spread in any of the three ensembles,
and these different feedback components contribute about
the same to the total cloud feedback spread in the three
ensembles. Again, we emphasize that there is no a priori
reason to expect a single model’s estimated parametric un-
certainty to reproduce the spread in cloud feedbacks in
CMIP6 or AMIP.

Why might the parametric and structural uncertainties be
comparable? Why does it matter? That the spreads in cloud
feedbacks due to parametric and structural uncertainties are
similar suggests that the processes controlling cloud feedbacks
can be influenced by either structural or parametric differences.
For example, if some cloud property is contributing to a feed-
back and that property varies with structural and parametric dif-
ferences which are similarly uncertain, then the portion of the
cloud feedbacks set by that property would have similar spreads
across CMIP6 and the CAM6 PPE. The CAM6 PPE is advanta-
geous because the only difference between ensemble members
is parameter values and each parameter controls a process in
the model. Therefore, in section 4, we evaluate the influence of
various parameters on feedbacks.

Notably, the total cloud feedback is smaller in the CAM6PPE
default simulation than in the CESM2 (AMIP) simulation,
which is smaller than the CESM2 (CMIP) simulation. We inves-
tigate these differences in section 7.

4. Parameters

a. Which parameters set the spread in cloud feedbacks?

An advantage of using a perturbed parameter ensemble is
the ability to identify the influence of various parameters on
the cloud feedbacks. Parameters correspond to physical pro-
cesses, so understanding which parameters control the spread
in a given feedback offers some insights into the processes
controlling that feedback in CAM6. We use regression mod-
els to quantify the influence of each parameter on the spread
in the total cloud feedback, each of its six components, and
the unassessed cloud feedback. Scatterplots of each parame-
ter against each of the cloud feedbacks studied here indicate
that it is reasonable to assume linearity. The linear regression
model is given by

l̂j 5 a0,j 1 ∑
45

i50
ai,jp̃i , (4)

where l̂j is the estimated cloud feedback component, a0,j is
the intercept for a cloud feedback component j, ai,j are the re-
gression coefficients for each parameter i and each cloud

feedback component j, and p̃i are the parameter values that
are scaled to fall between 0 and 1 according to

p̃i 5
pi 2 pi,min

pi,max 2 pi,min
, (5)

where pi are the unscaled parameter values, pi,min is the mini-
mum value in pi, and pi,max is the maximum value in pi. In
practice, we rescale the parameters using Python’s sklean.pre-
processing.MinMaxScaler function. To avoid overfitting due
to the large number of parameters (43) relative to feedbacks
(206), we use a least absolute shrinkage and selection operator
(LASSO) regression, which imposes an L1 penalty to yield a
sparse model (i.e., a model in which some parameters are elimi-
nated by setting their coefficient to 0). The degree of sparseness
is set by a tuning parameter. Here, the tuning parameter is cal-
culated using an automated, fivefold cross-validation function
(sklearn.linear_model.LassoCV in Python with default function
parameters). While it is common to use machine learning emu-
lation where we use a LASSO regression (e.g., Dagon et al.
2020), we find using 20-member test datasets that a LASSO re-
gression model has a comparable mean-squared error to the
Gaussian process and random forest machine learning models
for the cloud feedbacks studied here. See Watson-Parris et al.
(2022) for more details about machine learning emulators.

The six cloud feedback components are separate from
one another and approximately sum to the total cloud
feedback. Therefore, the sum of the regression models
given by Eq. (4) for each of the six cloud feedback compo-
nents yields an estimate of the total cloud feedback, as
follows:

lcloud ’∑
j
a0,j 1 ∑

45

i50
(∑

j
ai,j)p̃i , (6)

where j are the cloud feedback components. Conveniently,
the regression coefficients ai,j can be interpreted as the spread
of the estimated cloud feedback across the CAM6 PPE due to
variations in the corresponding parameter. This nice property
exists because the parameter values p̃i are scaled to fall be-
tween 0 and 1. More specifically, a given parameter’s influ-
ence on the cloud feedback component j is estimated by ai,jp̃i
for some parameters with index i. Since the smallest p̃i value is
always 0 and the largest p̃i value is always 1, the difference in lj
due to variations in parameter p̃i is ai,j. For example, if a param-
eter has a regression coefficient of 0.1, all else equal, the esti-
mated cloud feedback component will be 0.1 W m22 K21

greater when the parameter value is 1 than when it is 0. There-
fore, a regression coefficient of 0.1 means that variations in that
parameter are contributing a spread of 0.1 W m22 K21 to the
estimated cloud feedback component. Further, the contribution
of a given parameter’s variation to the total cloud feedback is
approximately equal to∑jai,jp̃i . In short, larger regression coef-
ficients indicate more contributions to the spread across the
CAM6 PPE.

Table 1 shows the regression coefficients for each cloud feed-
back component for the three parameters most highly corre-
lated with the total cloud feedback: CLUBB_C8, MG2_DCS,
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and ZM_capelmt. CLUBB_C8 is a skewness coefficient associ-
ated with the third moment of vertical velocity. Larger
CLUBB_C8 values correspond to thicker, more reflective clouds.
MG2_DCS is the ice–snow autoconversion size threshold; a
larger value favors more ice crystals over snow in the atmosphere.
ZM_capelmt is a CAPE threshold value for triggering deep con-
vection. Therefore, these processes have the largest influence on
the total cloud feedback in the CAM6 PPE. Table S1 shows the
regression coefficients for each cloud feedback component for all
43 parameters. Comparing the regression coefficients allows us to
see 1) how much spread in the total feedback is associated
with each parameter and 2) how each of the six cloud feedback
components contributes to the total spread. More specifically,
according to this simple model, about 0.14 W m22 K21 of the
spread in the total cloud feedback is attributed to variations
in CLUBB_C8, and that about 0.06 W m22 K21 of that
spread is from the tropical marine low-cloud feedback. About
0.25 W m22 K21 of the spread in the total cloud feedback
is attributed to variations in MG2_DCS, and that about
0.09 W m22 K21 of that spread is from the tropical anvil cloud
area feedback and about 0.05 W m22 K21 of that spread is from
the high-cloud altitude feedback. Further, ZM_capelmt contributes
about 0.17 W m22 K21 of the spread in the total cloud feedback,
and about 0.08 W m22 K21 is from the tropical anvil cloud
area feedback and about 0.07 W m22 K21 is from the high-
latitude low-cloud optical depth feedback. The sum of the six
cloud feedback component regression coefficients may differ
from the total cloud feedback regression coefficient because of
1) unassessed cloud feedback and 2) statistical model errors.
We also show the regression coefficients for the unassessed
cloud feedback, and they partially explain the discrepancy for
many of the parameters (Table 1 and Table S1).

The simple LASSO regression approach is very useful for
estimating the influence of each parameter on cloud feed-
backs but is subject to some limitations. The regression
model does not capture nonlinear relationships between the
parameter and feedback, nor the influence of interactions
between parameters on the feedback. Nonetheless, given
the comparable spreads in cloud feedbacks between CMIP
models and the CAM6 PPE, the processes associated with
these three influential parameters may be promising areas
of future model development in order to constrain cloud
feedbacks.

b. Influence of parameters on mean-state cloud errors
and total cloud feedback

We plot each parameter as a function of the mean-state
cloud error and feedbacks. We evaluate the total cloud feed-
back as compared with 1) mean-state cloud errors and 2) the
WCRP-assessed estimate of the feedback components. We use
ENET to evaluate mean-state cloud errors and an aggregated
difference metric, RMSD, to compare with the WCRP esti-
mate. The ENET metric is described in section 2a and in Klein
et al. (2013) and Zelinka et al. (2022). Following Zelinka et al.
(2022), the difference metric used to compare with WCRP esti-
mates is the root-mean-square deviation (RMSD) of the esti-
mated feedback as compared to the central WCRP-assessed
value for each of the six assessed feedback components. The ag-
gregated metric is simply the square root of the average of the six
squared differences. Therefore, the difference metric is mini-
mized when all six of the assessed cloud feedbacks are close to
their assessed value. We plot the parameter value as a function of
the mean-state cloud errorENET and an aggregated distance met-
ric for feedback RMSD for the three parameters most highly cor-
related with cloud feedback: MG2_DCS, ZM_capelmt, and
CLUBB_C8 (Fig. 4) and for the two parameters most highly cor-
related with ENET: MG2_accre_enhan_fact and ZM_cldfrac_dp2
(Fig. 5). These parameters were selected because their correlation
coefficients are greater than 0.2. The parameter MG2_accre_en-
han_fact is an accretion enhancing factor, with larger values cor-
responding to more accretion of cloud droplets onto rain. The
ZM_cldfrac_dp2 is a parameter for deep convective cloud frac-
tion as a function of convective mass flux, with larger values cor-
responding to a higher deep convective cloud fraction. The
equivalent figures for the remaining parameters are shown in
Figs. S3–S7. The parameters most correlated with the total cloud
feedback are different from the parameters most correlated with
ENET, which is not surprising given the lack of correlation be-
tween ENET and the total cloud feedback (section 5 and Fig. 6c).

5. CAM6 PPE constraint on the total cloud feedback

Given the large parametric sensitivity of cloud feedbacks in
the CAM6 PPE, we ask whether the CAM6 PPE provides a
constraint on the total cloud feedback. To that end, we further
compare the CAM6 PPE to mean-state cloud errors using
ENET and to WCRP estimates of cloud feedbacks using

TABLE 1. LASSO regression coefficient for each parameter, multiplied by 100 by visual clarity; Hi Alt 5 high-cloud altitude, Trop
Lo 5 tropical marine low cloud, Trop Anvil 5 tropical anvil cloud area, Land 5 land cloud amount, Mid Lo 5 middle latitude
marine low-cloud amount, and Hi Lo 5 high-latitude low-cloud optical depth.

Scheme
Parameter

name Description Total
Sum

assessed
Hi
Alt

Trop
Lo

Trop
Anvil Land

Mid
Lo

Hi
Lo Unassessed

CLUBB C8 Coef No. 1 in C8
skewness equation

14.04 9.71 20.74 6.35 0 1.66 1.54 0.91 3.03

MG2/PUMAS DCS Autoconversion size
threshold ice-snow

25.01 16.33 4.72 0.31 8.72 0.96 2.64 21.02 8.12

ZM capelmt Triggering threshold for
ZM convection

16.68 14.45 0.23 20.74 7.82 21.15 0.96 7.33 1.95
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RMSD. The six assessed feedbacks nearly sum to the total
cloud feedback, so the total cloud feedback must approach
the assessed value as the RMSD approaches 0 unless there is
a large unassessed component of the feedback. Importantly, it
should be kept in mind that the assessed cloud feedback val-
ues are only estimates; they do not represent the true cloud
feedbacks. In fact, several of the assessed values have been
updated by more recent studies (e.g., Wall et al. 2022; McKim
et al. 2023). This difference metric is only as valuable as the

assessed value. Another limitation of this approach is that the
difference metric only uses the mean of the assessed range
and neglects the estimated spread associated with each of the
six cloud feedback components. For these reasons, we put
more emphasis on the constraint made using mean-state cloud
errors than on the constraint made by comparing with WCRP
values.

We plot the total cloud feedback as a function of RMSD in
Fig. 6a and as a function of ENET in Fig. 6b. For reference, the

FIG. 4. Scatterplot of the total cloud feedback vs the cloud feedback ENET in the CAM6 PPE with color of dots cor-
responding to the parameter value for three parameters. Each panel corresponds to a different parameter; the three
most influential parameters with respect to the cloud feedback are represented. Gray shading covers the region where
ENET values are equal to or smaller than those of the default simulation. The default simulation is encircled in black.

FIG. 5. As in Fig. 4, but the two most influential parameters with respect to ENET are shown.
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CMIP5 and CMIP6 values are also included in the plot and
are the same as those from Figs. 3 and 4 of Zelinka et al.
(2022). Looking at RMSD in Fig. 6a, we find that the CAM6
PPE simulations exhibit some similar behavior to the CMIP
models: simulations with a small RMSD tend to have more
moderate cloud feedbacks than those with large RMSD. The
large-RMSD models include both anomalously small and
large cloud feedbacks. However, there are a number of differ-
ences in the behavior between the CAM6 PPE and the CMIP
models of Zelinka et al. (2022). The CAM6 PPE members
tend to have larger RMSD values than the CMIP models. The
smallest RMSD value among the CAM6 PPE members is
about 0.11 W m22 K21, whereas there are seven CMIP mod-
els with smaller RMSD values. Further, the distribution of to-
tal cloud feedbacks is shifted toward larger values in the
CAM6 PPE as compared to CMIP models. Looking at Fig. 3,
both of these differences may be the result of comparatively
large high-cloud altitude feedbacks in the CAM6 PPE.

Looking at Fig. 6b, the mean-state cloud errors tell a differ-
ent story than that of the RMSD. In the CMIP models, the
total cloud feedback is anticorrelated with ENET, suggesting
ENET constrains cloud feedbacks to be large. On the other hand,
in the CAM6 PPE, the total cloud feedback is uncorrelated

with ENET, and there is a large spread in cloud feedbacks
among the small ENET ensemble members, suggesting that
mean-state cloud errors do not provide an effective con-
straint on the total cloud feedback in the CAM6 PPE.
Figure 6c plots the relationship between mean-state cloud
errors (ENET) and WCRP difference metric (RMSD),
and we find that, consistent with the CMIP models, there
is no relationship between the two metrics in the CAM6
PPE.

We conclude that we are unable to robustly constrain the
total cloud feedback using the CAM6 PPE with available in-
formation. We leave further understanding of the lack of rela-
tionship between ENET and RMSD to future work. We also
leave further understanding of the inconsistent relationship
between ENET and the cloud feedback across the CAM6 PPE
and CMIP6 ensembles to future work.

6. CAM5 to CAM6

Given the substantial influence of parameters on cloud feed-
backs in CAM6, and the large increase in ECS from CAM5 to
CAM6, we next evaluate whether changes in parameter values
(parameter tuning) between CAM5 and CAM6 contribute to

FIG. 6. Scatterplot of the total cloud feedback vs the cloud feedback (a) RMSD and (b) ENET in the CAM6 PPE
simulations (blue) and the CMIP5 and CMIP6 models (orange). The black dot denotes the default PPE simulation. In
(a) and (b), the dark gray horizontal line is the WCRP-assessed cloud feedback value, and the horizontal gray shaded
region covers the 1s WCRP range. The vertical gray shaded region covers the region where RMSD and ENET values
are equal to or smaller than those of the default PPE simulation. (c) A scatterplot of RMSD vs ENET. The horizontal
gray shaded region covers RMSD values equal to or smaller than those of the CAM6 PPE default simulation, and the
vertical gray shaded region covers ENET values equal to or smaller than those of the CAM6 PPE default simulation.
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the increase in the total cloud feedback and ECS (Gettelman
et al. 2019).

To address this question, we develop a simple linear regres-
sion model of total cloud feedback as a function of each pa-
rameter value. We again use a LASSO regression to avoid
overfitting. The regression is similar to those of Eqs. (4) and
(6), except here the total cloud feedback is estimated directly
instead of as the sum of the cloud feedback components.
The simple regression model has a root-mean-square error
(RMSE) of 0.13 W m22 K22. Figure 7 compares the regres-
sion model estimate to the actual cloud feedback (minus the
intercept). Looking at Fig. 7, it is clear that this simple ap-
proach struggles to capture the very large and very small total
cloud feedback values. Still, the RMSE value and Fig. 7 pro-
vide enough confidence in our simple model estimate of the
total feedback to proceed.

To use this simple model to evaluate the role of parameter
values in changes in the total cloud feedback between CAM5
and CAM6, we create “CAM5” and “CAM6” parameter sets.
The CAM6 parameter set is the default parameter set. On the
other hand, the CAM5 parameter set uses the CAM5 values
for the 10 parameters which 1) appear in both CAM5 and
CAM6 and 2) change from CAM5 to CAM6 and default

parameter values for the remaining parameters. Each param-
eter set is scaled to fall between 0 and 1 according to Eq. (5).
Figure 7 shows the contribution of each of these 10 parameters
to the estimated total cloud feedback, which is the parameter
value multiplied by its corresponding regression coefficient.
Total cloud feedback values are then estimated by plugging
the CAM5 and CAM6 parameter sets into the regression
model. The CAM5 and CAM6 estimates and their contribu-
tions from each parameter are shown in Fig. 7.

Examining Fig. 7, we learn that there is a negligible change
in the estimated total cloud feedback due to differences in pa-
rameters from CAM5 to CAM6: only a 0.01 W m22 K21 in-
crease. For reference, Gettelman et al. (2019) found an increase
of 0.27 W m22 K21 from CAM5 to CAM6. This analysis points
to structural changes to the model as the cause of the increase
in cloud feedbacks, not parameter tuning.

7. Differences in total cloud feedback across CESM2
experiments

From the “total cloud feedback” row of Fig. 3, it is clear
that the CESM2 (CMIP) simulation has a larger total cloud
feedback (0.96 W m22 K21) than the CESM2 (AMIP)

FIG. 7. Total cloud feedback in each PPE simulation (yellow), the LASSO regression estimate
of the total cloud feedback (orange), and the contribution to that estimate from the 10 parame-
ters that 1) appear in both CAM5 and CAM6 and 2) changed from CAM5 to CAM6 (green).
Stars denote the estimated total cloud feedback and the contributions from each parameter using
CAM5 (light blue, below) and CAM6 (dark blue, above) parameter values. The regression inter-
cept has been subtracted from both the estimated and actual cloud feedback values.
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simulation (0.72 W m22 K21), which is larger still than that of
the CAM6 PPE default simulation (0.56 W m22 K21).4 These
discrepancies are quite large. To demonstrate that these dis-
crepancies in cloud feedback are substantial, we solve for
their corresponding ECS values using CESM2 (CMIP) values
of DF and lnoncloud. We find substantially different corre-
sponding ECS values of 5.1 K in CESM2 (CMIP), 3.7 K in
CESM2 (AMIP), and 3.1 K in CAM6 PPE default.

The difference in total cloud feedback between CESM2
(CMIP) and CESM2 (AMIP) may be attributable, not exhaus-
tively, to 1) different abilities of these simulations to represent
the “pattern” effect and/or 2) differences in high-latitude optical
depth feedbacks. In GCMs, the pattern effect describes a time
evolution of radiative feedbacks, including cloud radiative feed-
backs, which is largely attributable to the evolution of SST pat-
terns over time (Dong et al. 2019). The CESM2 (CMIP) cloud
feedback is calculated using 150-yr piControl and abrupt-4xCO2

simulations. In contrast, the CESM2 (AMIP) cloud feedback is
calculated using 25-yr amip and amip_p4K (i.e., uniform warm-
ing) simulations. Therefore, the pattern effect influences the
cloud feedback in the CESM2 (CMIP) simulation but is not rep-
resented by the CESM2 (AMIP) simulation because it has uni-
form 4-K warming. We note that the pattern effect is large in
CESM2 as compared to other models and an observation-based
estimate (Andrews et al. 2022). Another possible explanation
for the larger cloud feedback in CESM2 (CMIP) than CESM2
(AMIP) is the evolution of a high-latitude optical depth feed-
back. This feedback is negative and goes to zero with warming
and is the result of decreases in ice clouds and increases in liquid
cloud over the Southern Ocean with warming. However, as the
planet warms, there are fewer ice clouds and more liquid clouds,
so this feedback approaches zero. This feedback increases from
21.25 W m22 K21 in the first 15 years to 20.02 W m22 K21 in
the last 15 years of a 150-yr fully coupled abrupt-4xCO2 simula-
tion of CESM2 (Bjordal et al. 2020).5 The value of this feedback
in CESM2 (AMIP) is 20.97 W m22 K21. We do not have the
necessary output to calculate this feedback in CESM2 (CMIP),
but we hypothesize that it is likely larger (less negative) in the
150-yr abrupt-4xCO2 CESM2 (CMIP) simulation than in the
CESM2 (AMIP) simulation. Therefore, this high-latitude opti-
cal depth feedback is another potential explanation for the dis-
crepancy in cloud feedbacks between the CESM2 (AMIP) and
CESM2 (CMIP).

On the other hand, the difference in total cloud feedback be-
tween the default CAM6 PPE simulation (0.56 W m22 K21)
and the CESM2 (AMIP) simulation (0.72 W m22 K21) is sur-
prising. Differences between the CESM2 (AMIP) and CAM6
PPE default simulations include the following: 1) the CAM6

PPE default simulation is only 3 years long, while the CESM2
(AMIP) simulation is 25 years long; 2) the CAM6 PPE default
simulation is forced with different SSTs than the CESM2
(AMIP) simulation (CAM6 PPE SSTs do not have interannual
variability, while CESM2 (AMIP) SSTs do); and 3) CESM2
(AMIP) uses CAM6.0, whereas the CAM6 PPE default simula-
tions use CAM6.3.6 To evaluate whether simulation length or
interannual variability can explain the discrepancy in total cloud
feedback, we calculate the interannual spread in total cloud
feedback for each of the 25 years of the CESM2 (AMIP) simu-
lation and for a 12-yr version of the CAM6 PPE default simula-
tion (Fig. 3). We find that neither spread explains the difference
in total cloud feedback.

To further evaluate which of these differences explains the
discrepancy in total cloud feedback, we run a 3-yr simulation
using CAM6.0 [the version of CAM used in CESM2 (AMIP)]
forced with F2000climo SSTs (the same SSTs as CAM6 PPE).
This simulation, which we refer to as CAM6.0, differs from
the CAM6 PPE default (CAM6.3) simulation only in model
generation. The total feedback in CAM6.0 (F2000climo) is
0.81 W m22 K21, which is even larger than that in the CESM2
(AMIP) simulation (0.72 W m21), falling near the high end of
interannual variability (cf. the black square and its whiskers
with the black triangle in Fig. 3). Note that the difference
between the CESM2 (AMIP) simulation and CAM6.0
(F2000climo) simulation is likely attributable to the difference
in SST between the two. The AMIP SSTs show a strong pat-
tern effect over the duration of the historical period which is
not captured by F2000climo, which is cyclic (Andrews et al.
2022). Finally, by comparing the black circle with the black
triangle in Fig. 3, it appears that modifications to CAM6
made between CAM6.0 and CAM6.3 have reduced the cli-
mate sensitivity. Parameter values did not change between
these two experiments, so this difference is attributable en-
tirely to structural modifications to CAM6.

Having identified that structural changes between model ver-
sions impact the total cloud feedback, we next evaluate the dif-
ference between the six cloud feedback components in CAM6.0
and CAM6.3 (Fig. 3). Figure 3 reveals that the difference in the
cloud feedback is primarily due to differences in high-cloud
altitude, tropical marine low-cloud, and unassessed cloud feed-
backs. We further evaluate the difference between cloud feed-
backs between CAM6.0 and CAM6.3 by plotting the high-,
midlevel-, and low-cloud contributors to both the SW and LW
cloud feedbacks (Fig. 8). From Fig. 8, it is clear that the
decrease in cloud feedbacks is primarily due to the SW contri-
bution, with small decreases due to the LW contribution. Fur-
ther, the SW contribution is dominated by the low-cloud
contribution in the tropics and midlatitudes. To the extent that
the LW cloud feedback decreases is mostly due to changes in
the high-cloud contribution in the tropics and subtropics. We
leave further evaluation of the difference in the cloud feedback
between CAM6.0 and CAM6.3 to future work.

4 The cloud feedback in amip-future4K is 0.50 W m22 K21,
lower than any of the three simulations we focus on in this paper.
This may be the result of very different SST patterns, especially in
the tropical Pacific.

5 Bjordal et al. (2020) calculate the high-latitude low-cloud opti-
cal depth feedback slightly differently from Sherwood et al. (2020)
and elsewhere in this paper. Further, the details of the CESM2
simulations of Bjordal et al. (2020) are slightly different from those
of CESM2 (CMIP).

6 More specifically, CESM2 (AMIP) uses cam6-0-026 and the
CAM6 PPE is run with cam6-3-026.
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8. Comparison with PaleoCalibr

To further understand our results, we compare the CAM6
PPE used here to another PPE which used the Paleoclimate-
calibrated CAM6 (CAM6-PaleoCalibr), which has a smaller
ECS than the standard version of CAM6 (Zhu et al. 2022).
CAM6-PaleoCalibr removed an inappropriate limiter on the
cloud ice number that is present in other versions of CAM6
and uses a shorter time step in the MG2 microphysics scheme.
CAM6-PaleoCalibr also uses a coarser resolution of 1.98 3 2.58
than the CAM6 PPE simulations, which have a resolution of
0.98 3 1.258. As a result of differences in horizontal resolution,
a few of the default parameters are tuned differently, including
a smaller MG2_DCS value, a smaller dust emission factor, a
smaller CLUBB_gamma, and a larger seasalt emission scaling
in the coarser version. In addition, the PaleoCalibr PPE uses
year 1850 levels of atmospheric constituents and control cli-
mate SSTs, whereas the CAM6 PPE uses year 2000 levels.
Finally, the PaleoCalibr PPE uses a larger range of CLUBB_C8
and CLUBB_C11b to explore their influence on the state
dependence of the cloud feedback. The PaleoCalibr default

simulation has a cloud feedback of 0.36 W m22 K22, which
is smaller than that of the CAM6 PPE used above
(0.56 W m22 K22). Figure S8 compares the assessed cloud
feedbacks in the PaleoCalibr PPE to those in Fig. 3. Although
the PaleoCalibr PPE default simulation has a smaller total
cloud feedback than the CAM6 PPE default simulation, the
relatively large high-cloud altitude feedback persists in the
PaleoCalibr PPE, indicating that the changes made to re-
duce the total cloud feedback in the PaleoCalibr version do
not address this discrepancy.

9. Discussion and conclusions

The CAM6 PPE provides a tool for evaluating the sensitivity
of cloud feedbacks to uncertain model parameters. Surprisingly,
the CAM6 PPE nearly captures the large spread across CMIP6
models. We did not expect this a priori, although a similar spread
was found in the Met Office’s atmospheric GCM (Rostron et al.
2020). Further, the decomposition of these cloud feedbacks into
1) their SW and LW components and 2) the cloud feedback com-
ponents of Sherwood et al. (2020) shows similar spreads across
the two ensembles. Taking the spread across CMIP6 models to
represent structural uncertainty and the spread across the CAM6
PPE to represent parametric uncertainty, these results indicate
that the spread in cloud feedbacks due to parametric uncertainty
is similar to that due to structural uncertainty, though this does
not imply that changes in parameters explain differences across
models. An advantage of using a PPE is that each parameter cor-
responds to a physical process, and the spread in cloud feedbacks
due to each parameter and corresponding process can be esti-
mated. The parameters with the greatest influence on cloud feed-
backs across the CAM6 PPE are CLUBB_C8, MG2_DCS, and
ZM_capelmt. These parameters control aspects of cloud thick-
ness, cloud ice, and deep convection, respectively.

We further use the CAM6 PPE to identify the parameters
with the most influence on total cloud feedback and mean-
state cloud errors. We find that the most influential parame-
ters (by correlation) with mean-state cloud errors are MG2
accretion enhancement factor (MG2_accre_enhan_factor)
and ZM deep convective cloud fraction (ZM_cldfrac_dp2).
We find that the most influential parameters (by correlation)
with total cloud feedback are MG2 ice–snow autoconversion
size threshold (MG2_DCS), ZM triggering threshold for con-
vection (ZM_capelmt), and a CLUBB coefficient in the C8
skewness equation (CLUBB_C8) and point out the values
which are associated with the smallest cloud feedback errors.
Therefore, an improved representation of the processes corre-
sponding to these parameters in models is a promising avenue
for constraining simulated cloud feedbacks in CAM6 and per-
haps other models too. However, we intentionally stop short
of recommending these values for model tuning. First, climate
model simulations of warmer climates should not be tuned to
a desired “answer” since there are no observations with which
to tune. Additionally, as mentioned above, the assessment of
Sherwood et al. (2020), while the most comprehensive to
date, does not represent the truth. Therefore, climate models
should not be developed or tuned to match these values. Fur-
ther, the model may be subject to equifinality; that is,

FIG. 8. Zonal-mean cloud feedbacks in CAM6.0 (solid) and in
CAM6.3 (dashed). (c) The total cloud feedback is decomposed
into (a) SW and (b) LW contributions. The total cloud feedback
(black) is also decomposed into high- (pink), midlevel- (green),
and low-cloud (blue) contributions. The x axis is scaled as the sine
of latitude.
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different combinations of parameters may yield the same
cloud feedback error. Moreover, cloud feedbacks are not the
only simulated feature of the model of interest but are the
only subject of this analysis. Finally, it is clear from this analy-
sis that ECS and cloud feedbacks are very sensitive to both
parameter values and structural differences in the model, so
would not provide a strong constraint for model tuning.

The range of a high-cloud altitude feedback in the CAM6 PPE
sits at larger values than that of CMIP6 models, AMIP models,
and the WCRP assessment. More specifically, the CAM6 PPE
simulations tend to have larger high-cloud altitude feedbacks
than the assessed 1s range and than most CMIP6 and AMIP
models, and CESM2 has the largest high-cloud altitude feedback
for any CMIP6 model. In contrast, Sherwood et al. (2020) con-
sider the high-cloud altitude feedback to be among the more cer-
tain of the six cloud feedback components. Their assessed value
reflects the mean and standard deviation across GCMs, with sup-
port from observations, cloud-resolving models, and large eddy
simulations. In the CAM6 PPE, the parameters most correlated
with the high-cloud altitude feedback are the convective parcel
temperature perturbation parameter in the convection scheme
(ZM_tiedke_add) and a scaling for subgrid velocity of ice activa-
tion in the microphysics scheme (microp_aero_wsubi_scale). Fur-
ther investigation of the relatively large high-cloud altitude
feedback in CESM2 should be a priority for future investigations.

We use the CAM6 PPE to attempt to constrain the total
cloud feedback by comparing 1) a measure of the cloud feed-
back discrepancy (as compared with Sherwood et al. 2020)
and 2) a measure of mean-state cloud errors in each CAM6
PPE member to the total cloud feedback. We find inconsis-
tent results between the two metrics. Comparing with CMIP
models, we find that WCRP-assessed values provide a similar
constraint in the CAM6 PPE as in the CMIP models (moder-
ate cloud feedback). However, we find that despite the strong
anticorrelation between mean-state cloud errors and total
cloud feedback in CMIP models, mean-state cloud errors and
total cloud feedback are uncorrelated in the CAM6 PPE,
which is broadly consistent with the results of Tsushima et al.
(2020), who used a PPE created with the Met Office’s atmo-
spheric GCM. The mean-state cloud errors and the difference
from WCRP-assessed values are uncorrelated with one an-
other in both the CMIP ensemble and CAM6 PPE. While the
comparison with WCRP-assessed values provides similar con-
straints in both the CMIP ensemble and CAM6 PPE, this
analysis is subject to several important limitations, both here
and in Zelinka et al. (2022). Sherwood et al. (2020) estimate
the uncertainty of each cloud feedback component, and this
estimated uncertainty is not accounted for in the error metric
used here. Further, the assessment of Sherwood et al. (2020)
has limitations, and more recent work has updated the as-
sessed values (e.g., Myers et al. 2021). Finally, since the six
cloud feedback components roughly sum to the total, the total
cloud feedback estimate must approach that of Sherwood
et al. (2020) as RMSD approaches zero, provided that the un-
assessed feedbacks are small. Therefore, we find our analysis
which uses the CAM6 PPE to constrain total cloud feedback
inconclusive.

Given the substantial influence of parameters on cloud feed-
backs in the CAM6 PPE, we ask whether parameter tuning is
responsible for the increase in the cloud feedback and thus ECS
from CAM5 to CAM6. Using a simple regression model, we es-
timate that changes in parameters between CAM5 and CAM6
have little influence on the total cloud feedback and therefore
are not responsible for the increase in the cloud feedback be-
tween generations. This indicates that structural changes to the
model between CAM5 and CAM6 are responsible for the in-
crease in total cloud feedback and ECS.

We evaluate the smaller cloud feedback in the CAM6 PPE de-
fault simulation as compared to CESM2 (AMIP). We find that
changes to the model between CAM6.0 [used for CESM2
(AMIP)] and CAM6.3 (used for the CAM6 PPE) explain the re-
duced cloud feedback. It is unclear whether the decrease in the
cloud feedback between CAM6.0 and CAM6.3 foreshadows
smaller cloud feedbacks in future versions of CESM because ulti-
mately the model’s cloud feedback will depend heavily on the
role of coupling and further changes during model development.

Overall, our analysis highlights the large sensitivity of ECS es-
timates to both changes in parameters and structural changes in
CAM6, which may help explain why it has been so difficult to
constrain.
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