The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Comparison of Clustering Approaches in a Multimodel Ensemble for U.S. East Coast Cold Season Extratropical Cyclones
-
2024
-
Source: Weather and Forecasting, 39(3), 461-484
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:Several clustering approaches are evaluated for 1–9-day forecasts using a multimodel ensemble that includes the GEFS, ECMWF, and Canadian ensembles. Six clustering algorithms and three clustering spaces are evaluated using mean sea level pressure (MSLP) and 12-h accumulated precipitation (APCP) for cool-season extratropical cyclones across the Northeast United States. Using the MSLP cluster membership to obtain the APCP clusters is also evaluated, along with applying clustering determined at one lead time to cluster forecasts at a different lead time. Five scenarios from each clustering algorithm are evaluated using displacement and intensity/amount errors from the scenario nearest to the MSLP and 12-h APCP analyses in the NCEP GFS and ERA5, respectively. Most clustering strategies yield similar improvements over the full ensemble mean and are similar in probabilistic skill except that 1) intensity displacement space gives lower MSLP displacement and intensity errors; and 2) Euclidean space and agglomerative hierarchical clustering, when using either full or average linkage, struggle to produce reasonably sized clusters. Applying clusters derived from MSLP to 12-h APCP forecasts is not as skillful as clustering by 12-h APCP directly, especially if several members contain little precipitation. Use of the same cluster membership for one lead time to cluster the forecast at another lead time is less skillful than clustering independently at each forecast lead time. Finally, the number of members within each cluster does not necessarily correspond with the best forecast, especially at the longer lead times, when the probability of the smallest cluster being the best scenario was usually underestimated.
-
Keywords:
-
Source:Weather and Forecasting, 39(3), 461-484
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: