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ABSTRACT: Several clustering approaches are evaluated for 1–9-day forecasts using a multimodel ensemble that in-
cludes the GEFS, ECMWF, and Canadian ensembles. Six clustering algorithms and three clustering spaces are evaluated
using mean sea level pressure (MSLP) and 12-h accumulated precipitation (APCP) for cool-season extratropical cyclones
across the Northeast United States. Using the MSLP cluster membership to obtain the APCP clusters is also evaluated,
along with applying clustering determined at one lead time to cluster forecasts at a different lead time. Five scenarios from
each clustering algorithm are evaluated using displacement and intensity/amount errors from the scenario nearest to the
MSLP and 12-h APCP analyses in the NCEP GFS and ERA5, respectively. Most clustering strategies yield similar im-
provements over the full ensemble mean and are similar in probabilistic skill except that 1) intensity displacement space
gives lower MSLP displacement and intensity errors; and 2) Euclidean space and agglomerative hierarchical clustering,
when using either full or average linkage, struggle to produce reasonably sized clusters. Applying clusters derived from
MSLP to 12-h APCP forecasts is not as skillful as clustering by 12-h APCP directly, especially if several members contain
little precipitation. Use of the same cluster membership for one lead time to cluster the forecast at another lead time is less
skillful than clustering independently at each forecast lead time. Finally, the number of members within each cluster does
not necessarily correspond with the best forecast, especially at the longer lead times, when the probability of the smallest
cluster being the best scenario was usually underestimated.

SIGNIFICANCE STATEMENT: Numerical weather prediction ensembles are widely used, but more postprocessing
tools are necessary to help forecasters interpret and communicate the possible outcomes. This study evaluates various
clustering approaches, combining a large number of model forecasts with similar attributes together into a small num-
ber of scenarios. The 1–9-day forecasts of both sea level pressure and 12-h precipitation are used to evaluate the cluster-
ing approaches for a large number of U.S. East Coast winter cyclones, which is an important forecast problem for this
region.
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1. Introduction

Winter extratropical cyclones along the U.S. East Coast
pose a variety of hazards, including coastal flooding (Blake
et al. 2013), strong winds (Booth et al. 2015), and heavy pre-
cipitation (Colle et al. 2013). The impacts of these cyclones
are highly dependent on storm-track variations (Ma and
Chang 2017) and can be difficult to predict. One such tool to
help forecast these storms and other types of extreme weather
is model ensembles, which have been widely used in opera-
tional forecasting since the 1990s (Molteni et al. 1996; Houte-
kamer et al. 1996; Toth and Kalnay 1993); however, the
common products for interpreting model ensemble output,
such as the ensemble mean, spaghetti plots, and probability
plots, are not easily applicable for Impact-Based Decision
Support Services (IDSS) of the National Weather Service
(Uccellini and Hoeve 2019). In addition, U.S. East Coast ex-
tratropical cyclones have recently shown general intensity
underprediction and left-of-track biases at the medium range,
and bias toward slower progression of cyclones in the short

range, but with a high degree of variation from case to case
(Korfe and Colle 2018).

One method to generate possible outcomes from model en-
sembles is to cluster ensemble members with similar forecasts
and then evaluate the “scenario,” or the ensemble mean of
each cluster. The Met Office (UKMO) has used k-means clus-
tering (KMC) in the climatology of extratropical cyclones to
identify several circulation patterns and then match ensemble
members to the climatological circulations (Neal et al. 2016).
Using climatological and forecast frequencies in combination
allows UKMET to derive the probabilities of a certain circula-
tion pattern emerging and allows forecasters to become famil-
iar with these patterns.

Zheng et al. (2017, hereafter ZH17) developed a “fuzzy” clus-
tering (FZC) method using a 90-member multimodel ensemble,
including the Global Ensemble Forecast System (GEFS) (Toth
and Kalnay 1993), the Canadian Meteorological Center Ensem-
ble (CMC) (Molteni et al. 1996), and European Centre for
Medium-Range Weather Forecasts (ECMWF) (Houtekamer
et al. 1996) and applied it to two U.S. East Coast extratropical
cyclones. The ZH17 method clustered mean sea level pressure
(MSLP) from ensemble members using the leading two princi-
pal components (PCs) of a principal component analysis, ana-
lyzing modes of variability across the model ensemble. The two
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case examples in ZH17 demonstrated that the method could pro-
duce well-separated clusters with distinct probabilities for MSLP
and 500-hPa geopotential height. Furthermore, ZH17 found lower
root-mean-square errors and higher correlations for the scenario
nearest to analysis (SNA) compared to the 90-member ensemble
mean. Zheng et al. (2019, hereafter ZH19) applied the two-PC
(2PC) FZC method to a set of 180 East Coast winter cyclone
events from 2007 to 2015 using the 24–216-h lead times. On aver-
age the mean of the SNA performed better than the 90-member
ensemble mean. ZH19 also found that each of the ensemble sys-
tems were generally underdispersed at lead times of 72 h and later,
while clustering the multimodel 90-member ensemble resulted in
the least underdispersion. ZH19 also detailed an analysis of the in-
fluence that the dynamical cores had on clustering and found that
the ECMWF members had a higher probability of being in the
cluster nearest to the analysis than members of either the CMC or
GEFS. Nevertheless, ZH19 still found that the SNA performed
better than the ECMWF ensemble mean and the multimodel en-
semblemean.

Recently, the Weather Prediction Center (WPC) has uti-
lized the ZH17 clustering approach on the same global multi-
model ensemble but generates the four clusters using 500-hPa
geopotential heights and a KMC approach (Lamberson et al.
2023, hereafter L23). WPC’s clustering tool showed forecast-
ing improvements over the ensemble mean when using the
“best cluster,” with lower mean absolute errors for forecasts
of daily maximum and minimum temperature and precipita-
tion. Furthermore, the clustering method was well received by
forecasters.

The ZH17, ZH19, and WPC results are encouraging and the
2PC KMC method is now operational within the National
Weather Service forecast offices using the DESI (Dynamic
Ensemble-based Scenarios for IDSS) software (J. Nelson 2022,
personal communication). However, the NWS and prior studies
only utilize the 2PC KMC approach, only cluster the mass field
(e.g., MSLP or 500-hPa height), and clusters are done indepen-
dently for each forecast lead time. Therefore, our study evalu-
ates six clustering algorithms, each in three clustering spaces, to
determine the accuracy and probabilistic skill of each method
for the most likely SNA. The list of clustering algorithms tested
include 1) FZC, 2) KMC, 3) agglomerative hierarchical cluster-
ing (AHC) using Ward’s linkage, 4) AHC using average linkage,
5) AHC using full linkage, and 6) clustering by self-organizing
map. The list of clustering spaces tested includes 1) the 2PC
space, 2) the Euclidean space, and 3) the intensity displacement
(IDISP) space. The details of the clustering algorithms and the
clustering spaces are discussed in section two. Direct application
to model ensembles in previous studies, along with current oper-
ational use, motivate the comparison of FZC, KMC, and the
2PC space. AHC was selected due to the ease of use and under-
standing of the approach. Self-organizing map was selected for
being a distinct alternative to contrast the other algorithms
tested. Euclidean space was selected to demonstrate the impor-
tance of isolating modes of variability. IDISP space presented a
new option not directly tied to modes of variability in contrast
with the Euclidean and 2PC spaces.

While AHC and self-organizing map have not been used
for ensemble clustering, other meteorological applications

exist for these algorithms. Lopes and Machado (2015) gath-
ered information about the temporal changes in tornadic ac-
tivity, and then used AHC to categorize the yearly tornadic
activity and then find the common weather patterns for each
cluster. Dolan and Davis (1992) used a two-stage intensity-
based clustering technique with AHC to evaluate Nor’easter
climatology. Finally, a technique to identify and classify the
flow patterns around extratropical cyclones was used in Hart
et al. (2015), clustering each flow pattern by identifying a posi-
tional vector representing the flow trajectory around the
cyclone.

A self-organizing map was used in Ohba and Sugimoto (2019)
to identify synoptic patterns for the mei-yu–baiu front in China.
The self-organizing map was given daily climatological zonal
and meridional winds from the mei-yu–baiu region as inputs.
This generated representative patterns which could be used to
identify the synoptic and mesoscale behaviors along the front.
Rousi et al. (2015) fed a self-organizing map daily 500-hPa geo-
potential height anomalies to identify teleconnection patterns.
Reusch et al. (2007) used a SOM for analysis of monthly MSLP
climate variability patterns for the North Atlantic Oscillation.

While a diversity of clustering algorithms exist, with many hav-
ing meteorological applications, little work exists to compare the
effects of clustering approaches on model ensembles. The main
goal of our work is to fill this gap by comparing several combina-
tions of clustering approaches. Additional approaches which do
not appear to be addressed in the literature include evaluating
the efficacy of using precipitation scenarios obtained using mass
field (e.g., MSLP) and the impact of using the same cluster mem-
bership from earlier or later model runs of a case. This study ad-
dresses the following questions:

• What is the most skillful clustering approach as a function
of forecast lead time?

• How well does using the clustering at one lead time to clus-
ter forecasts at different lead times compare to their syn-
chronized counterparts?

• How does the skill of clustering 12-h accumulated precipi-
tation (APCP) using MSLP clusters compare to clustering
APCP itself?

2. Datasets

The same 90-member ensemble was used as in ZH19, con-
sisting of the 50 ECMWF, 20 CMC, and 20 GEFS members,
respectively. The Global Forecast System (GFS) analysis was
used for the verification for MSLP to be consistent with
ZH19. ECMWF Reanalysis v5 (ERA5) data from the Coper-
nicus Climate Data Store (Hersbach et al. 2019) was used for
precipitation verification since it has 1-h precipitation accu-
mulation, and it has agreed well with observations over the
Northeastern United States (Crossett et al. 2020). All ensem-
ble and reanalysis data were bilinearly interpolated to a 18 3 18
grid after obtaining them from The Observing System Research
and Predictability Experiment’s Interactive Grand Global En-
semble Archive (TIGGE) (Bougeault et al. 2010; Swinbank et al.
2016).
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As in ZH19, this study utilized the same 180 winter extratropi-
cal cyclones from November through March from 2007 to 2015
that attain an analysis minimum pressure , 1005 hPa within
the region from 328–458N to 798–628W (region 1, yellow box in
Fig. 1a) at any point in its lifetime. If a cyclone obtains the
pressure minimum multiple times while within region 1, the
two valid times that are nearest to the center of region 1
were both added to the dataset. For each cyclone, each en-
semble forecast was analyzed every 24 h from a day-1 (24 h)
lead time to a day-9 (216 h) lead time. The results were com-
bined into short (24, 48, 72 h), medium (96, 120, 144 h), and
long (168, 192, 216 h) lead times.

Because of TIGGE data availability, the total number of cases
analyzed at any given forecast hour is less than 180. In addition,
data for APCP must also have the corresponding MSLP data

available so that cross-variable clustering could be performed.
The percentage of cyclones evaluated for each lead time for
MSLP are 70%, 66%, and 64% for the short, medium, and long
lead times, respectively, and 64%, 61%, and 59% for APCP.

While region 1 was used to identify cyclones as in ZH19
(Fig. 1a), the evaluation of model ensemble clusters for this
paper was done on a larger region 2 (308–558N, 858–508W, the
entire region depicted in Fig. 1a). If the MSLP analysis pres-
sure minimum fell exactly on the boundary of region 2,
the case was excluded to reduce instances where the nontar-
geted cyclones were present. This filtering removed 52 (29%
of) cyclones. A domain larger than region 2 was not consid-
ered or tested in our study, since a larger domain increases
the risk that the first PCs do not fully capture the variability
of the targeted cyclone.

FIG. 1. (a) Outline of region 1 (solid yellow), and the 90-member ensemble mean MSLP (every 4 hPa, solid black)
and spread of MSLP (shaded, every one standard deviation) for a valid time (VT) at 0000 UTC 30 Dec 2012, with an
initial time (IT) at 0000 UTC 27 Dec 2012. (b) NCEP analysis MSLP (solid every 4 hPa) and 500-hPa height (color
shaded every 15 dam). (c) First EOF of PCA (red positive and blue negative) calculated for MSLP for this ensemble
valid time. (d) As in (c), but for the second EOF.
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3. Clustering approaches

Clustering requires two decisions: algorithm and space. The
tested spaces included: 1) 2PC space, 2) Euclidean space, and 3) an
“intensity displacement” (IDISP) space. The tested algorithms in-
clude: 1) k-means clustering (KMC), 2) fuzzy clustering (FZC),
3) agglomerative hierarchical clustering (AHC) using Ward’s link-
age, 4) AHC using average linkage, 5) AHC using full linkage, and
6) clustering by self-organizing map (SOM). Therefore, 18 combi-
nations were evaluated. For all clustering approaches, the number
of clusters was fixed to 5 as in ZH17 and ZH19. ZH19 had tested a
number of clusters ranging from 2 to 8, with 5–6 clusters yielding
the most stable and skillful solution. Furthermore, WPC settled on
4 clusters for the forecasters (L23), which is similar to our number.

a. Clustering spaces

This study used the same 2PC space method as described in
ZH17, ZH19, and L23. First, a PC analysis was performed across

model members in region 2 for either MSLP or APCP at a par-
ticular lead time. PC analysis begins with the construction of a
matrix containing the ensemble data, with each column repre-
senting an ensemble member and each row representing a grid
point. The EOFs are the eigenvectors vn of the covariance ma-
trix. The first and second eigenvectors, v1 (EOF1) and v2
(EOF2), represent the first and second greatest modes of vari-
ability within the ensemble. The scalar product between EOF1
and EOF2 and the ensemble members gives the PCs represent-
ing the greatest (PC1) and second greatest (PC2) modes of vari-
ability. PC1 and PC2 serve as the phase space to perform
clustering. ZH19 showed that the interquartile range of the vari-
ance explained by each PC ranges for the 180 cyclone cases from
12% to 66% for PC1 and 6%–42% for PC2, thus the total vari-
ance explained within the 2PC space can be low for some cases.
However, adding more PCs to the clustering space does not sig-
nificantly change results (Kiel 2021); while additional PCs may

FIG. 2. (a) The 90-member ensemble mean of 12-h APCP (every 4 mm, solid black) and spread (shaded, every one
standard deviation) at the same VT and IT as in Fig. 1. (b) ERA5 analysis of 12-h APCP (every 4 mm, solid black) and
center ofmass (blue dot). (c) First EOFof PCA calculated for 12-hAPCP for thismodel run. (d)As in (c), but for the sec-
ondEOF.
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improve clustering in a small number of cases, often a low vari-
ance explained indicates a high degree of noise (North et al.
1982).

Figures 1 and 2 show an example of a PC analysis for
MSLP and 12-h APCP, respectfully, for a 72-h forecast valid
at 0000 UTC 30 December 2012. There are two cyclones
within region 2, with the southwest (SW) cyclone more rele-
vant to northeastern U.S. forecasters. The ensemble mean
and spread of MSLP (Fig. 1a) and 12-h APCP (Fig. 2a) dem-
onstrate the large variance in ensemble member solutions.

The first two EOFs demonstrate the spatial patterns in MSLP
that explain 53% and 19% of the ensemble spread and variance
in this case. For MSLP, EOF1 is dominated by the strength of
the SW cyclone and along-track spatial variations in the north-
east (NE) cyclone (Fig. 1c). EOF2 variance is dominated by
along-track variance in the SW cyclone (Fig. 1d). For 12-h
APCP, EOF1 (Fig. 2c) represents intensity variations in the

precipitation shield and explains 31% of the variance (Fig. 2c),
while EOF2 represents an east/west shift in the precipitation
shield and explains 12% of the variance (Fig. 2d).

The next space evaluated was the Euclidean space. Each en-
semble member was organized as a two-dimensional latitude/
longitude grid (Xm, Yn). The Euclidean space transforms the
two-dimensional grid into a one-dimensional vector (0, Zm1n, in
which m 5 18 and n 5 14). Clustering was done by comparing
the Euclidean distances of each of these one-dimensional vec-
tors. Alternatively, the Euclidean space can be considered equiv-
alent to using all of the PCs of a PC space. While some of the
results from clustering using the Euclidean space are shown be-
low, the Euclidean space itself cannot be visualized due to its
high dimensionality.

The final space is a proposed 3D space: the IDISP space. For
clustering weather features such as cyclones, IDISP is defined
by an intensity parameter on one axis and the displacement

FIG. 3. (a) Plot of the 3D intensity displacement space for the December 2012 case (Fig. 1) using FZC. (b) The N/S
vs E/W face of the space. (c) The E/W vs intensity face of the space. (d) The N/S vs intensity face of the space. The
NCEP analysis (black X) is marked in all plots. In (b)–(d), cluster means (black squares), and the 90-member ensem-
ble mean (black star) are also marked.
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variations of the intensity parameter on the other two axes
(Fig. 3). For MSLP, the intensity component is the minimum
pressure value, and the two displacement components are the
north/south (N/S; latitude) and east/west (E/W; longitude) dis-
placements of the minimum pressure for a cyclone relative to
the ensemble mean. The MSLP IDISP approach was highly
sensitive to the location of the pressure minimum, and in sce-
narios where at least two cyclones were present within the clus-
tering region, bimodal distributions occurred as the pressure
minimum flipped between cyclones (Fig. 3). Given the large
variability in precipitation across ensemble members, the inten-
sity for APCP is simply the average of all precipitation at each
grid point in region 2, and displacement is defined as the N/S

and E/W displacement of the center of mass of APCP in this re-
gion. The center of mass gives a reference location of the pre-
cipitation shield (e.g., Bytheway and Kummerow 2015; Duda
and Gallus 2013) and it is determined by weighing each grid
point latitude/longitude value by the precipitation amount and
averaging the weighted values together. All MSLP and APCP
intensities and displacements were found for each ensemble
member and standardized. The standardized value is calculated
as the raw value minus the ensemble mean and the difference di-
vided by the ensemble standard deviation. By definition, IDISP
is the only space that does not use the general variance of the
field to cluster, instead using the variance of a specific feature
within the field (e.g., variance of pressure minimum) to cluster.

FIG. 4. KMC and FZC of 2PC space of the December 2012 case (same VT as Fig. 1) after (a) one and (b) four itera-
tions. KMC is represented by preiterative cluster centers (red), the cell where each cluster center is nearest (solid
black lines), and new cluster centers (green) after averaging all phase points within the cell l. FZC is represented by
bivariate ellipses around where each phase point’s probability of belonging to a given cluster exceeds 25% (shaded).
Next, color-coded clusters (see legend 1–5) are shown after convergence for (c) KMC (8 iterations) and (d) FZC
(82 iterations). Also plotted in (c) and (d) are the NCEP analysis (black X), 90-member ensemble mean (black star),
and mean PC1/PC2 values of clusters (black squares).
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b. Clustering algorithms

KMC attempts to minimize the sum of the squared distances
between all points representing the ensemble members within a
given clustering space (hereafter, phase point) and the nearest
cluster center (MacQueen 1967). KMC is conducted in several
steps. First, an initial set of clusters is generated using the k-
means plus algorithm (Arthur and Vassilvitskii 2007) (Fig. 4a).
Next, the Elkan algorithm (Elkan 2003), which uses the triangle

inequality to accelerate KMC, is used to converge toward a local
minimum. Finally, the algorithm is rerun 10 times. The solution
with the lowest sum of squared intracluster distances was taken
(Fig. 4c).

FZC is similar to KMC, except that each element is as-
signed a probability of belonging to each cluster (Dunn 1973).
Each intracluster distance is weighted by the average of its
probability. Each probability was initially assigned randomly.

FIG. 5. Resulting scenarios plotted as in Fig. 1b, or the “cluster ensemble mean” of the ensemble members repre-
sented by each cluster, ordered from (a) largest to (e) smallest, of Fig. 4d (2PC EOF FZC), plotted as in Fig. 1b.
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The Ross algorithm (Ross 2010), which applies a weight to
the “fuzziness” of clusters, was used to iterate from the ran-
dom assignments toward the local minimum solution effi-
ciently (Fig. 4a). After FZC was completed, each member was
assigned to the cluster which has the highest probability of rep-
resenting it (Fig. 4b). The iterations continued until a local
minimum was reached (Fig. 4d). Sensitivity from the initializa-
tion of the clustering algorithm using various random seeds is
insufficient to significantly change our results. Figure 5 shows
the scenarios from FZC along with the number of members
which contributed to each scenario. For FZC of the Euclidean
space, an additional behavior is noted where the algorithm
sometimes fails to generate a complete set of five clusters even
when they are specified. The behavior is a result of assigning
each phase point to the cluster with the highest probability of

belonging to that cluster. If every phase point has a higher
chance of being a part of one of four clusters than the fifth
cluster, the fifth cluster is excluded and only four clusters
form. This behavior is only observed with Euclidean space;
FZC in the other spaces always leads to five clusters. In addi-
tion, the loss of the intended number of clusters is not an issue
for any discrete clustering algorithms.

AHC works by iteratively merging the phase points/clusters
one at a time until the desired number of clusters is reached.
Clusters are merged on each iteration based on a linkage cri-
terion. This study tests 1) Ward’s linkage, 2) full linkage, and
3) average linkage. Ward’s linkage finds the two phase points
or group of phase points that when merged results in the low-
est increase in the sum of squared Euclidean distances be-
tween all members within the same cluster (Ward 1963). Full

FIG. 6. SOM for 2PC space for the December 2012 case. (a) Plot of the randomly selected ensemble member (green
diamond), SOM nodes (red stars), and the lines representing the Euclidean distances between the ensemble member
and the SOM nodes (blue lines), and the phase point closest to the node (green star, green line). (b) Plot of the SOM
nodes after they are adjusted toward the green star. (c) Plot of SOM nodes after 1000 iterations. (d) The final color-
coded clusters, NCEP analysis (black X), 90-member ensemble mean (black star), and mean PC1/PC2 values of clus-
ters (black squares).
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linkage finds the minimum Euclidean distance between the fur-
thest members of each phase point/group (Defays 1977). Aver-
age linkage finds the average distance between all possible
phase point/group combinations and merges the two phase
points/groups with the smallest average. (Sokal and Michener
1958).

The largest scenario of AHC in a 2PC space gave a larger
first cluster of 35/90 (39%), compared to 23/90 (26%) for
KMC, but MSLP scenarios for AHC Ward’s linkage maintain
visual similarity to the 2PC FZC scenarios.

SOM clustering is done by iteratively evaluating the distance
between each phase point in the clustering space against ran-
domly located nodes (Kohonen 1982). Random locations, or
“nodes,” equivalent to the number of clusters desired, were se-
lected across the clustering space. On each iteration, one phase
point was selected at random. The node which was nearest to
the selected phase point by the Euclidean distance was defined
as the best matching unit (BMU). The BMU and the other no-
des were moved closer to the phase point using an inverse func-
tion of distance from the BMU, where the further the nodes
were from the BMU, the less they were adjusted toward the
phase point. Rousi et al. (2015) shows the equations used in this
study for the SOM. SOM is demonstrated by showing the identi-
fied phase point (green diamond) and BMU (green star, con-
nected by green solid line to green diamond) in the first iteration
(Fig. 6a), followed by the node locations after that iteration
(Fig. 6b). After repeating for 1000 iterations (Fig. 6c), the result-
ing clusters (Fig. 6d) were retrieved. SOM scenarios only show
slight deviations from FZC (Figs. 7 and 8).

c. Alternative clustering strategies

Two “alternative” tests using 2PC fuzzy clustering were
considered: 1) Using the MSLP clusters to cluster 12-h APCP

or “cross-field” clustering; and 2) using an alternative lead
time, or applying cluster memberships obtained at one lead
time to ensemble members at a different lead time. The first
method checks if the clusters remain consistent across differ-
ent forecast parameters. The second method tests if clusters
remained consistent across lead times and the viability of uti-
lizing the same cluster members across many lead times,
which would help one to animate fields smoothly through the
forecast.

4. Evaluation of clustering approaches

The statistics used to compare clustering approaches in-
clude: 1) the mean magnitude of displacement error of the
SNA and mean magnitude of intensity/amount error of the
SNA, 2) the silhouette score, 3) the weighted index distribu-
tion, 4) the mean adjusted Rand index (ARI) between clus-
ters, and 5) the Brier skill score based on probabilistic cluster
membership. All statistical analyses were evaluated over the
appropriate 95% bootstrapped confidence interval.

Some statistics relied on the identification of the SNA, de-
fined as the scenario whose mean location in the clustering
space has the minimum Euclidean distance from the projec-
tion of the analysis onto the clustering space. The analysis
“projection” is where the analysis would exist in the clustering
space if it was a member of the ensemble. For the Euclidean
space, the projection replicates the same process that was
done with the ensemble members, with the analysis data flat-
tened from a 2D array to a 1D vector. The projection of the
IDISP space analysis is also the same process as was done
with the ensemble members: finding the analysis pressure
minimum and N/S and E/W position for MSLP, finding the
N/S and E/W position of the center of mass for APCP, and
weighting each relative to the respective IDISP space. For
2PC, adding a phase point to the EOF analysis changes the
structure of the PC space itself. An additional projection for-
mula is required to obtain the theoretical location that the
analysis would occur if it were an ensemble member. The pro-
jection equation that was used is the same one that was for-
mulated by von Storch (1999), with the formula described by
and used in ZH19 and section a of the appendix.

a. Magnitude of intensity/amount and displacement error

Magnitude of displacement and intensity errors were deter-
mined differently for MSLP and APCP. The mean intensity
error for MSLP was calculated as the average MSLP differ-
ence between each member of the SNA and the analysis in a
38 3 38 box centered on the analysis pressure minimum. A
38 3 38 square was used to get a more representative general
intensity of the extratropical cyclone. The displacement error
for MSLP was found by taking the Euclidean distance be-
tween the location of the cyclone pressure minimums of the
analysis and each scenario. The intensity error for APCP was
calculated by finding the 10 highest precipitation amounts
from each member of each scenario, averaging them, and
then finding the difference between this result and its analysis
analog. The process is also repeated for the 90-member en-
semble as well. The displacement error of APCP was found

FIG. 7. 2PC cluster means of each of the clustering algorithms
tested (colored dots), NCEP analysis (black X), and 90-member
ensemble mean (black star).
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using the Euclidean distance between the center of masses for
the analysis and each scenario for the entire precipitation field
within region 2.

b. Silhouette score

An important aspect of cluster evaluation is determining
the value of cluster discreteness. Ideally, each cluster should

be well separated with clear visual gaps between all groups.
The silhouette score quantifies discreteness. It compares the
mean intracluster distance, or average Euclidean distance be-
tween all pairs of phase points within a cluster, and the mean
nearest-cluster distance, or average distance between all pairs
of phase points of the two nearest clusters (Rousseeuw 1987).
For example, a silhouette score of “0” indicates that there are

FIG. 8. The 1012-hPa spaghetti plots representing scenarios for a sample of clustering approaches for the December
2012 case, including (a) 2PC KMC, (b) 2PC FZC, (c) 2PC AHC average linkage, (d) 2PC SOM, and (e) IDISP SOM.
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no discernable boundaries between clusters, such as if cluster-
ing is attempted on a set of phase points uniformly distributed
across a grid. The silhouette score would be 0 on a uniform
grid no matter the choice of clustering algorithm. A silhouette
score of “1,” in contrast, occurs if all pairs of phase points
within every cluster have a distance of zero between them,
with clusters having a nonzero distance between each other.
A formula for the silhouette score may be found in section b
of the appendix.

c. Weighted index distribution

The weighted index distribution evaluates if the size of each
cluster represents the sample probability of being the SNA and
is similar to the reliability component of a Brier score. Ideally,
the size of the cluster would represent the probability that it will
be the SNA. For example, the largest cluster should be the most
likely cluster to be the SNA.

To begin, each scenario was assigned an index, ranked from
1 to 5 from the greatest to the least number of members. Next,
the index of the SNA was identified. For example, using 2PC
FZC from the December 2012 case, the index values and the
number of members of the five MSLP scenarios are: [1: 23, 2: 20,
3: 19, 4: 17, 5: 11]. The SNA is marked in bold. After identifying
the SNA for every case, the number of times each index is iden-
tified to be the SNA is divided by the total number of tested
cases to get the sample probability of any index being the SNA.
However, the cluster with most members will intrinsically be
more likely to be closest to analysis, as the largest cluster will
cover the greatest range of a reasonable distribution of potential
analysis outcomes. The results were adjusted by first finding the
average size of each index across all cases. For example, the av-
erage of all index 1 values would be the average size of the larg-
est cluster for the entire dataset. After finding each index’s
average, the number of members in each scenario is divided by
that value to generate the weighted index distribution. If, after
weighting, a cluster has a higher probability to be the SNA than
expected, the cluster would show evidence of forecast skill
greater than what the number of members would suggest. In
contrast, evidence of lower skill than the number of members
would suggest that the largest cluster has a lower forecast skill
than expected.

d. Adjusted Rand index

The Rand index (RI) is used to determine if two cluster algo-
rithms behave differently from each other by evaluating the pair-
wise similarity between clusters (Rand 1971). To find the RI, the
number of times that the algorithms agree or disagree on whether
a pair of phase points belong to the same cluster or not were
summed. The RI describes the ratio of the number of agreements
over the sum of agreements and disagreements. A score of 1
indicates perfect similarity and a score of 0 indicates perfect

dissimilarity. Perfect similarity means that two clustering ap-
proaches result in the exact same cluster memberships, whereas
perfect dissimilarity means there is not a single instance in which
the clustering approaches agree that a given pair of members
belong to the same cluster. The adjusted Rand index (ARI) ad-
justs the RI to account for random chance (Hubert and Arabie
1985). A value lower than 0 can exist for ARI, in which case,
agreement is less than what would be expected to exist at ran-
dom. Otherwise, a score of 0 means any agreements would be
coincidental (completely random), and a score of 1 indicates a
perfect cluster agreement with no degree of randomness. De-
tails on the formulas used to calculate the ARI may be found
in Vinh et al. (2009), and they are provided in section c of the
appendix as well.

e. Brier skill score by cluster probability

The Brier skill score (BSS) is a probabilistic skill metric
used to compare an ensemble forecast to a reference forecast
(Brier 1950). In this study BSS was calculated by assigning
each cluster a probability equal to the number of members in
each cluster divided by the total number of members (90).
For verification, the cluster nearest analysis was compared to
a “yes” “observation (probability of 1.0) while the other clus-
ters were compared to a “no” observation (probability of 0.0).
For the reference score, each cluster was given the same prob-
ability of occurrence (random selection of a cluster).

5. Results

All the clustering strategies were evaluated by first showing
differences for two case examples and then evaluating them for
the entire dataset.

a. MSLP cluster comparisons

Changing a clustering algorithm, without changing the cluster-
ing space, usually does not result in much variation across the
scenarios aside from the shuffling of the cluster index number
(e.g., Figs. 8a,b). However, an exception is that the AHC algo-
rithm generally produces a larger first cluster and a smaller fifth
cluster (Table 1). AHC average linkage in particular frequently
places outliers into a separate cluster, with the average size of the
smallest cluster being 2/90 (2%), with the behavior being less ap-
parent in AHC full linkage (4/90, 4%). While Ward’s and full
linkage may still be useful when more uneven cluster sizes are
desired, the outlier sensitivity produced by AHC average linkage
can be problematic when trying to avoid having a majority of
phase points belonging to a single cluster.

Of the clustering spaces tested, Euclidean space tends to place
the majority, and sometimes nearly all, of the ensemble mem-
bers into a single cluster. For instance, the average cluster size of
the largest cluster for Euclidean clustering using AHC average

TABLE 1. Average size of the smallest and largest clusters for each clustering algorithm over all spaces.

Cluster FZC KMC SOM AHC-Ward’s AHC-Full AHC-Avg

Largest 25/90 (28%) 28/90 (31%) 23/90 (26%) 31/90 (34%) 38/90 (42%) 52/90 (58%)
Smallest 11/90 (12%) 8/90 (9%) 12/90 (13%) 7/90 (8%) 4/90 (4%) 2/90 (2%)
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linkage is 66/90 (68%), higher than the average cluster size for
2PC of 46/90 (51%) and IDISP of 48/90 (53%). Euclidean space
suffers from a lack of discreteness, with phase points within the
Euclidean space being nearly equidistant from each other. The
behavior is demonstrated when plotting the silhouette scores
(Fig. 9). The rather low overall average silhouette score of 0.15
for Euclidean space compared to other spaces (e.g., 0.34 for
2PC) demonstrates the poor discreteness of Euclidean space
making it a challenge to cluster in that space effectively.

The average ARI for MSLP is 0.516 0.02 and 0.316 0.02 be-
tween clustering algorithms and clustering spaces, respectively.
The lower average ARI value for clustering spaces indicates that
there are larger differences in cluster assignment when changing
the clustering space than when changing the clustering algo-
rithm. Therefore, for the algorithms and spaces tested in this
study, the choice of clustering space is a more important factor
than choice of clustering algorithm in determining how model
ensembles are clustered.

FIG. 9. Mean silhouette scores and 95% bootstrapped confidence intervals for spaces using FZC, for (a) MSLP and
(b) 12-h APCP, by lead time day. Higher silhouette values indicate higher discreteness.

FIG. 10. MSLP long lead time (days 7–9) mean (a) magnitude of displacement and (b) magnitude of intensity errors
for the SNA of all spaces.
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The ARI did not vary significantly across lead times (Kiel
2021). For example, the average ARI between all possible pairs
of clustering algorithms for 2PC space at short, medium, and
long lead times is 0.49 6 0.03, 0.53 6 0.03, and 0.52 6 0.02,

respectively. Furthermore, the ARI has a narrow distribution
across clustering algorithms. ARIs generally remain consistent
across clustering algorithms when fixing clustering spaces, and
clustering spaces when fixing clustering algorithms. There are

FIG. 11. MSLP weighted index distribution for FZC for (a) 2PC space and (b) IDISP space. Each index is separated,
from left to right, into short (blue), medium (green), and long (red) lead times, along with 95% confidence intervals
(black line), and a 20% threshold (orange line). Values below the solid red line indicate that the probability of the index
containing the SNA is less likely than random, and above the solid orange line, it is more likely than random.

FIG. 12. The 2PC clustering (see label bar shading) of 12-h APCP for the December 2012 case (same VT as Fig. 1)
when using (a) FZC or (b) AHC clustering using average linkage. (c),(d) Spaghetti plot for 4 mm 12-h APCP for the
five scenarios.
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two instances where ARI shows deviant behaviors. First, the
ARI between KMC and FZC are much greater than the average
between all clustering algorithms, with an average across all lead
times of 0.72 6 0.03. KMC and FZC are computationally simi-
lar, so the high degree of similarity between the two clustering
algorithms is expected. Second, the average ARI of IDISP
against all other clustering spaces for FZC is 0.18 6 0.02, lower
than the overall average between clustering spaces.

Both displacement and intensity errors increase with lead
time. The average displacement error magnitude for the SNA
of all of the 2PC algorithms is 294, 565, and 879 km at short,
medium, and long lead times, respectively, while the average
magnitude of intensity error is 1.7, 3.5, and 4.5 hPa. The rel-
ative behavior between each clustering strategy does not
change with lead time, and long lead times are used to dem-
onstrate them (Fig. 10). Between clustering algorithms, dis-
placement and intensity errors lie within the margin of error
of each other within any fixed clustering space. Between

clustering spaces, IDISP gives lower displacement error
magnitudes than the other spaces, significant at the 95% CI
(Fig. 10a). Specifically, IDISP space gives average displacement
errors of 195, 391, and 649 km at short, medium, and long lead
times, respectively. A reason for the lower displacement errors
in IDISP is its high sensitivity to the location of the pressure
minimum. For example, in the December 2012 case, there are
two cyclones in the analysis (Fig. 1b), but the location of each
displacement component depends on which cyclone has the
lower pressure. The split distribution ultimately influences how
ensembles are clustered (Fig. 3). High sensitivity is also ob-
served in closed low versus open trough situations (not shown).
This sensitivity may contribute to why the SNA has the lowest
displacement errors for IDISP space.

The weighted index distribution reveals that the number of
members within a cluster does not necessarily correspond with
the probability of that scenario being the SNA. Since the num-
ber of clusters is fixed to five, 20% represents the expected

FIG. 13. The 12-h APCP long lead time (days 7–9) mean (a) magnitude of displacement and (b) magnitude of intensity
errors for the SNA of all spaces.

FIG. 14. As in Fig. 11, but for 12-h APCP instead of MSLP.
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probability of selecting a cluster based solely on the cluster
size. If the index probability is .20% (,20%), then the index
is more (less) likely to be the SNA than what the cluster size
would suggest. For both 2PC and IDISP FZC of the smallest
cluster (index 5) is ,20% for short lead times (Figs. 11a,b).
For example, the smallest cluster of the December 2012 case
(Fig. 5) would suggest a probability of being the SNA in less
than the expected probability of 11/90 (12%). One possible ex-
planation for this behavior is that the smallest cluster is most
likely to contain a set of outliers. The smallest cluster (index 5)
at short lead times is ,20% at a 95% confidence interval for
2PC for AHC full linkage and KMC; for Euclidean for AHC
Ward’s linkage, AHC full linkage, and KMC; and for IDISP
for KMC and SOM. Another behavior, observed in IDISP
space long lead times, is that the largest cluster (index 1) is
,20% (Fig. 11b). The largest cluster (index 1) at long lead
times is less likely to be the SNA than what is suggested by its
membership count. The weighted index distribution for the
largest cluster (index 1) is ,20% for long lead times for all
clustering approaches, except in Euclidean for FZC, KMC,
and SOM, and in IDISP for AHC average linkage and FZC.
As lead times lengthen, the sample probability of the largest

cluster being the SNA decreases, while the sample probability of
the smallest cluster being the SNA increases. Forecasters should
be cautious about interpreting the number of members within a
cluster as a probability of occurrence, as these percentages often
do not correspond with the sample probability unless at medium
lead times.

b. 12-h APCP cluster comparisons

As with MSLP, 12-h APCP AHC tends to produce a larger
first cluster than the other algorithms (Figs. 12a,b). The aver-
age size of the largest cluster for AHC in 2PC are 48/90 (60%)
for average linkage, 32/90 (36%) for Ward’s linkage, and 38/90
(39%) for full linkage. In contrast, the average size of the largest
cluster in 2PC FZC is 26/90 (30%). Using Euclidean space gen-
erates even larger clusters, with average size of the largest cluster
near or exceeding one-half of ensemble members for AHC aver-
age linkage (75/90, 84%), AHC Ward’s linkage (35/90, 35%),
AHC full linkage, (51/90, 57%), and FZC (44/90, 49%). These
large cluster sizes are a result of the combined effects of a very
low overall discreteness lower than that of MSLP (0.12, Fig. 9b),
and the tendency for AHC to cluster outliers by themselves.

FIG. 15. Comparison of mean SNA results for 12-h APCP when using 12-h APCP-based clusters (blue) vs MSLP-
based clusters (yellow), plotted with 95% confidence intervals, along with the 90-member ensemble mean (black). Re-
sults are for (a) magnitude of displacement error and (b) magnitude of intensity error.

TABLE 2. Percent of cases that 12-h APCP-based clusters instead of cross-field clusters give a lower displacement or intensity error
for 2PC space, along with 95% bootstrapped confidence intervals. The values are the averaged result of all clustering algorithms
tested in 2PC space.

Magnitude of displacement error Magnitude of intensity error

Short lead time 62% 6 6% 57% 6 6%
Medium lead time 59% 6 6% 64% 6 6%
Long lead time 57% 6 6% 62% 6 6%
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Effectively, AHC clusters in Euclidean space act to detect out-
liers instead of evenly clustering the ensemble members.

The ARI results for 12-h APCP are like MSLP, with ARIs
once again not varying across lead times. In addition, averages
remain within the margin of uncertainty of each other across

clustering algorithms within clustering spaces, and clustering
spaces when testing clustering algorithms (not shown). Aver-
age ARIs between clustering algorithms (e.g., 0.53 6 0.02 for
2PC) remain higher than average ARI between clustering
spaces (e.g., FZC is 0.33 6 0.02). As with MSLP, KMC and

FIG. 16. (a) MSLP analysis and 500-hPa height and (b) 12-h APCP analysis (solid every 4 mm) along with center
of mass (blue dot); (c) MSLP and (d) 12-h APCP EOF1s; and (e) MSLP and (f) 12-h APCP EOF2s, for VT at
0000 UTC 24 Nov 2011 and IT at 0000 UTC 16 Nov 2011. MSLP analysis is plotted as in Fig. 1b, APCP analysis is
plotted as in Fig. 2b, and EOFs are plotted as in Figs. 1c and 1d.
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FZC are the most similar (e.g., 0.67 6 0.03 in 2PC space).
IDISP remains the most dissimilar from other clustering
spaces, with the average ARI of IDISP against all other clus-
tering spaces for FZC of 0.186 0.02.

As with MSLP, the 12-h APCP SNA displacement and
amount errors increase with lead time as well. The displace-
ment errors on average are 71, 157, and 268 km for short,

medium, and long lead times, respectively, while the amount
errors are 3.70, 5.17, and 6.78 mm (12 h)21. As with MSLP,
the displacement and amount errors increase proportionately
by a multiplicative factor with lead time, so the long lead time
displacement (Fig. 13a) and amount (Fig. 13b) also represent an
amplified version of short and medium lead time results. The
SNA in the Euclidean space for AHC average and full linkage

FIG. 17. (a) The 2PC FZC of 12-h APCP in the 12-h APCP clustering spaces. (b)–(f) Resulting 12-h rainfall amounts
for each scenario for the November 2011 case, as in Fig. 16b.
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clustering are close to the 90-member ensemble mean; the result
of a large first cluster.

Finally, the 12-h APCP weighted index distributions are
compared for 2PC and IDISP FZC (Fig. 14). As with MSLP,
the average weighted index distribution value of the smallest
cluster (index 5) is ,20% for short lead times, meaning that
the smallest cluster is less likely to be the SNA than what is
suggested by its membership count in this time frame. An

overestimated probability of the smallest cluster at short lead
times also occurs with 95% confidence in 2PC for KMC, in
Euclidean space for AHC Ward’s linkage and SOM, and in
IDISP space for AHC average linkage and KMC. Likewise,
for both medium and long lead times, the average weighted
index distribution of the largest cluster (index 1) is ,20%.
The probability that the largest scenario for medium and long
lead times is the SNA is less than what the number of

FIG. 18. The 12-h APCP scenarios showing the precipitation amount (every 4 mm) when using 2PCMSLP FZC from
Fig. 16a, plotted as in Fig. 15b.
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members suggest. At long lead times, the weighted index dis-
tribution is ,20% for all clustering approaches for the largest
cluster. For medium lead times, all algorithms in 2PC space, FZC
of Euclidean, and AHC Ward’s linkage, AHC full linkage, and
KMC for IDISP are also ,20% for the first index. Compared to
MSLP, 12-h APCP is skewed more toward a lower probability of
occurrence for the largest cluster and a higher probability of oc-
currence for the smallest cluster. Otherwise, like MSLP, the prob-
ability of the largest cluster being the SNA decreases with
increasing lead time, and the probability of the smallest cluster be-
ing the SNA increases with increasing lead time. Overall,
weighted index distribution results demonstrate that a forecaster
should be particularly careful interpreting probabilities of 12-h
APCP clusters as well, especially at long lead times, as the largest
cluster is less likely to be the SNA and the smallest cluster is
more likely to be the SNA than suggested by the cluster size.

c. Cross-field clustering comparisons

Using clusters obtained from MSLP to generate 12-h APCP
clusters results in a reduction in forecast skill. Across the board,
the magnitude of displacement and rate errors increase com-
pared to the original 12-h APCP clusters (Fig. 15). In more than
50% of the cases, the displacement and magnitude errors were
larger when using cross-field clustering compared to same-field
clustering for 12-h APCP forecasts (Table 2), with the results
consistent across clustering approaches and well within the 95%
statistical significance thresholds of each other. The use of cross-
field clustering results in less distinct precipitation scenarios than
if precipitation itself were to be used to cluster. A second case is
used to better understand the issues with cross-field clustering, with
an IT of 0000 UTC 16 November 2011 and a VT of 0000 UTC
24 November 2011 (Fig. 16, 8-day lead time). The EOF1
and EOF2 of MSLP and 12-h APCP represent an intensity

FIG. 19. (a) Cluster plot for the December 2012 case MSLP scenarios (3-day lead time) when using 2PC FZC from a
6-day lead time. (b) The 1012-hPa spaghetti plot from mean of scenarios generated from (a).

FIG. 20. (a) Cluster plot for November 2011 case MSLP scenarios (8-day lead time) when using 2PC FZC from a
3-day lead time. (b) The 1012-hPa spaghetti plot from mean of scenarios generated from (a).
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shift and an east–west storm track shift, respectively. Finally, the
scenarios generated from 2PC FZC of 12-h APCP (Fig. 17) are
compared to the scenarios generated from cross-field clustering
(Fig. 18). The largest 12-h APCP cluster contains nearly twice as
many members (41/90, 46%) as the largest MSLP-based cluster
(23/90, 26%). Both of these scenarios contain little precipitation.
Fewer model members exist in the “no storm” scenario for
MSLP than 12-h APCP, suggesting that other MSLP-based sce-
narios include ensemble members with no identifiable surface
cyclone or no precipitation; clustering APCP using MSLP alone

is insufficient to represent precipitation; any associated MSLP
features must not have been sufficiently discrete for the cluster-
ing algorithms to pick them up. A diverse set of MSLP patterns,
scattered across the MSLP 2PC space, can produce no precipita-
tion and be near each other in the 12-h APCP space.

d. Alternative lead time clustering comparisons

To test the impact of using the same clusters at one lead time
for alternative lead times, the clusters derived at later lead times

FIG. 21. Comparison of mean Brier skill score values when using alternate lead times (blue) as opposed to not using
alternative lead times (yellow), plotted using 95% confidence intervals. (a) Long lead time clusters to cluster short
lead times vs using the short lead time clusters themselves, for MSLP. (b) Short lead time clusters to cluster a long
lead time vs using the long lead time clusters themselves, for MSLP. (c) As in (a), but for 12-h APCP. (d) As in (b),
but for 12-h APCP.
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are used to cluster forecasts at earlier lead times (e.g., day 6 to
cluster day 3) and vice versa (e.g., day 3 to cluster day 6). All pos-
sible pairs of lead time sets (short, medium, long) were tested.

An example from the December 2012 case visualizes using
the day-6 (later) lead time clusters to cluster the day-3 fore-
cast for 2PC FZC (Fig. 19). An example from the November
2011 case uses the day-3 (earlier) lead time clusters to cluster
the day-8 lead time clusters (Fig. 20). The phase space cluster-
ing plots of alternative lead time clusters projected onto the
lead time being tested for are noisy and demonstrate little co-
herence (Figs. 19a and 20a). When applying long lead times
on short lead times, only scenario three (maroon) suggests
there may be a small factor beyond noise, given the slight dif-
ference in positioning of the 1012-hPa isobar for this scenario
(Fig. 19b). Using the short lead time on long lead time shows
more variation between clusters, but it is difficult to know if
this variation is attributable to a factor other than model en-
semble spread (Fig. 20b). Averaged Brier skill scores across
cluster spaces consistently show that not using an alternative
lead time provides greater skill than using the alternative lead
times to cluster (Fig. 21). In addition, using the original clus-
ters more likely gives a SNA with a lower displacement and
lower intensity error for MSLP than using alternative lead
time clusters (Table 3). The results for 12-h APCP are quanti-
tatively similar (not shown).

6. Summary and future work

This study evaluated several different clustering strategies for
a 90-member ensemble by providing results from two case stud-
ies and evaluating the statistical differences for 180 cold season
extratropical cyclones along the U.S. East Coast. This study

demonstrates how each clustering strategy performed and if sig-
nificant differences exist in the resulting scenarios. Key results
are presented in Table 4.

For MSLP, the IDISP clustering space on average gives a more
skillful scenario nearest to the analysis than any of the other clus-
tering approaches. The SNA generated from IDISP gives lower
displacement errors than the other clustering spaces. However,
there are two caveats to clustering in IDISP space. First, when the
cyclone center is located at the edge of a region, by definition, var-
iance information is lost in the direction perpendicular to the re-
gion edge. Second, if multiple cyclones are present, IDISP may
“jump” between pressure minimums, and clustering is sensitive to
this behavior. In general, IDISP is a strong candidate for use in
clustering when a single cyclone is completely enclosed within the
tested region. The 2PC space clustering presents a viable alterna-
tive to IDISP when IDISP’s caveats are problematic. The SNA
still performs better than the 90-member ensemble mean, as
shown in previous studies (e.g., Zheng et al. 2019).

For 12-h APCP, there is no clustering approach which clearly
outperformed the rest. The version of IDISP tested for 12-h
APCP did not produce as strong of a result as for MSLP, with
the SNA performing marginally better than the 90-member en-
semble mean and similarly to the 2PC space.

Some clustering algorithms in Euclidean space are not recom-
mended to be used. Euclidean space is prone to producing a sin-
gle large cluster. The inherent challenges related to its high
dimensionality, along with the dataset being too noisy, inhibit the
creation of evenly sized clusters. Dimensionality reduction should
be performed (e.g., 2PC, IDISP), before applying a clustering al-
gorithm to MSLP or APCP.

Forecasters must be careful when assuming that the number
of members within each cluster is equivalent to the probability
of the scenario being the SNA. There are situations where the

TABLE 3. The percent of times using a different lead time to cluster gives a SNA with a lower MSLP displacement error
magnitude or magnitude of intensity error than using the original lead times to cluster, along with 95% bootstrapped confidence
intervals. The bold font is used to highlight the different lead times.

Magnitude of displacement error Magnitude of intensity error

Using medium lead time to cluster short lead time 48.0% 6 4.5% 49.0% 6 4.7%
Using long lead time to cluster short lead time 44.2% 6 4.6% 46.8% 6 4.5%
Using short lead time to cluster medium lead time 34.8% 6 4.7% 42.8% 6 4.8%
Using long lead time to cluster medium lead time 35.4% 6 4.6% 41.9% 6 4.8%
Using short lead time to cluster long lead time 39.3% 6 4.5% 44.3% 6 4.6%
Using medium lead time to cluster long lead time 41.1% 6 4.7% 43.8% 6 4.7%

TABLE 4. A summary of key results.

MSLP clusters Intensity displacement space gave the lowest magnitude of displacement errors
For some approaches the smallest cluster at short lead times, and the largest cluster at long

lead times, were less likely to be the SNA than the number of members suggested
12-h APCP clusters The low discreteness of Euclidean space led to high sensitivity to outliers, particularly for

average/full linkage, making these approaches not recommended for use with 12-h APCP
The largest cluster at long lead times was much less likely to be the SNA than what was

suggested by the number of members
12-h APCP by MSLP A diversity of MSLP patterns can all lead to a little/no precipitation pattern, limiting the

usefulness of using MSLP to cluster 12-h APCP
Alternative lead times Cluster membership is inconsistent from lead time to lead time and less skillful than not using

alternative lead times
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number of members within a cluster was not representative of
that cluster’s probability of being the most accurate. The small-
est cluster at short lead times and the largest cluster at long lead
times are both less likely to represent the SNA than the number
of members would suggest. The 12-h APCP especially shows dif-
ficulty representing the suggested probability of its largest cluster
at long lead times.

As for clustering algorithms, only AHC average or full link-
age show differences in behavior from other clustering algo-
rithms. AHC average and full linkages tend to leave outliers by
themselves, sometimes considering just a single ensemble mem-
ber as a “cluster.” The weighted index distribution results are
helpful in illuminating when outlier sensitive algorithms may be
of interest to a forecaster. At short lead times, scenarios consist-
ing only of outliers might not be useful to the forecaster, as the
smallest scenarios are less likely to be the SNA than what the
number of members would suggest. At long lead times, when
larger clusters underperform and smaller clusters overperform,
the outlier-sensitive AHC average and full linkage algorithms
may be more useful.

Using cross-field and alternative lead time clustering does not
improve results over original clusters. There may be situations
where the use of MSLP to cluster 12-h APCP could be useful to
a forecaster. However, a forecaster must be aware that ensemble
members with and without precipitation will average with each
other and reduce scenario variability. The strategy might be
most useful when only a few null precipitation model runs exist
in the ensemble, but further testing is needed to verify if this is
the case. The alternative lead time strategy appears to be unvi-
able due to inconsistency in cluster membership from lead time
to lead time; however, there may be some synoptic patterns
which may be more conducive to alternative lead time cluster-
ing, which was beyond the scope of this analysis and could be
the focus of future studies. Finally, additional work is needed to
see if a mass field may be clustered using a cross-field method
(e.g., 12-h APCP clusters may be used to cluster MSLP). Further
work is needed to understand whether there are better cluster-
ing approaches that exist. Use of a supervised machine learning
technique to attempt the identification of the SNA would indi-
cate if any predictive ability of scenarios exists beyond the num-
ber of members within each cluster. Sensitivity to changes in the
horizontal resolution and the domain size are important factors
but were not considered in this study so as to isolate the varia-
bles of focus. Other important fields, such as wind, potential
temperature, and 500-hPa heights, remain untested. The cluster-
ing strategies used in this study remain far from exhaustive. An
example of a viable clustering space may be to use the first PC
of several atmospheric parameters, such as clustering PC1 of
MSLP versus PC1 of APCP to cluster both MSLP and APCP.
This study only tested clustering algorithms where 100% of en-
semble members contributed to a cluster, including outliers. A
method where clusters could be formed without including out-
liers and the associated inevitable skew may give better results
(e.g., density-based spatial clustering with noise). While cluster-
ing generally shows promise as a method to simplify analysis of
model ensembles, forecasters should remain aware that cluster-
ing is unlikely to resolve or improve a poorly distributed set of
ensembles, such as those at long lead times that appear to give a

chaotic set of solutions. Effectiveness of clusters likely varies
substantially from scenario to scenario.
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APPENDIX

Selected Equations

a. Principal component projection

The von Storch (1999) projection equation is defined as

a 5
cov(A′E′)
var(E′) , (A1)

where a is the projection of the analysis onto the PC space, A′

is the standardized analysis relative to the 90-member ensem-
ble mean, and Ei is the ith leading EOF corresponding to the
PC desired.

b. Silhouette score

The silhouette score is defined as

1
n
∑
n

i51

bi 2 ai
max(ai, bi)

, (A2)

where n is the number of clusters, ai is the mean intracluster
distance between all phase points in the cluster, and bi is the
mean distance to the nearest cluster centroid for each phase
point, for the ith cluster.

c. Adjusted Rand index

Before formulating the ARI, it is better to first understand
the Rand index (RI) (Rand 1971). Following Rand’s original
formula, let S 5 a set of elements [1, 2, … , i], clustered by
method A into groups [A1, A2, … , Am] and by method B into
groups [B1, B2, … , Bn]. For example, S might be [1, 2, 3, 4, 5],
group A1 may be [1, 2], group A2 may be [3, 4, 5], group B1

may be [4, 5], and group B2 may be [1, 2, 3]. Next, define

1) w: The number of pairs of elements in S that are in the
same group in A and in the same group in B.
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2) x: The number of pairs of elements in S that are in differ-
ent groups in A and in different groups in B.

3) y: The number of pairs of elements in S that are in the
same group in A and in different groups in B.

4) z: The number of pairs of elements in S that are in differ-
ent groups in A in in the same group in B.

For example, the pair (1, 2) counts as an instance of “w,”
since both algorithms agree that the elements should belong to
the same group. The sum w 1 x is the number of agreements,
and y 1 z is the number of disagreements. The RI is (number
of agreements)/(number of agreements 1 number of disagree-
ments) or

RI 5
w 1 x

w 1 x 1 y 1 z
: (A3)

The ARI adjusts the RI to account for random chance (Hubert
and Arabie 1985). Following with Vinh et al. (2009), the pro-
cess of calculating ARI index is best understood by construc-
tion of a contingency table:

r11 · · · r1n x1

..

. . .
. ..

. ..
.

rm1 · · · rmn xm

y1 · · · yn ,

where
rij 5 |Ai>Bj|, (A4)

y1…yn 5 ∑
m

i50
ri1…∑

m

i50
rin, (A5)

x1… xn 5 ∑
n

j50
r1j …∑

n

j50
rmj: (A6)

Defining a generic term p, where the function f(p) 5 0.5 3

p(p 2 1), the ARI is defined as

ARI 5

∑
ij
f (rij) 2 ∑

i
f (xi)∑

j
f (yj)

[ ]/
f (n)

0:5 3 ∑
i
f (xi) 1∑

j
f (yj)

[ ]
2 ∑

i
f (xi)∑

j
f (yj)

[ ]/
f (n)

,

(A7)

where n is the total number of r objects.
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