Changes in Extremes of Temperature, Precipitation, and Runoff in California’s Central Valley During 1949–2010
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Changes in Extremes of Temperature, Precipitation, and Runoff in California’s Central Valley During 1949–2010

Filetype[PDF-9.09 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Hydrology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study presents a comprehensive trend analysis of precipitation, temperature, and runoff extremes in the Central Valley of California from an operational perspective. California is prone to those extremes of which any changes could have long-lasting adverse impacts on the society, economy, and environment of the State. Available long-term operational datasets of 176 forecasting basins in six forecasting groups and inflow to 12 major water supply reservoirs are employed. A suite of nine precipitation indices and nine temperature indices derived from historical (water year 1949–2010) six-hourly precipitation and temperature data for these basins are investigated, along with nine indices based on daily unimpaired inflow to those 12 reservoirs in a slightly shorter period. Those indices include daily maximum precipitation, temperature, runoff, snowmelt, and others that are critical in informing decision making in water resources management. The non-parametric Mann-Kendall trend test is applied with a trend-free pre-whitening procedure in identifying trends in these indices. Changes in empirical probability distributions of individual study indices in two equal sub-periods are also investigated. The results show decreasing number of cold nights, increasing number of warm nights, increasing maximum temperature, and increasing annual mean minimum temperature at about 60% of the study area. Changes in cold extremes are generally more pronounced than their counterparts in warm extremes, contributing to decreasing diurnal temperature ranges. In general, the driest and coldest Tulare forecasting group observes the most consistent changes among all six groups. Analysis of probability distributions of temperature indices in two sub-periods yields similar results. In contrast, changes in precipitation extremes are less consistent spatially and less significant in terms of change rate. Only four indices exhibit statistically significant changes in less than 10% of the study area. On the regional scale, only the American forecasting group shows significant decreasing trends in two indices including maximum six-hourly precipitation and simple daily intensity index. On the other hand, runoff exhibits strong resilience to the changes noticed in temperature and precipitation extremes. Only the most southern reservoir (Lake Isabella) shows significant earlier peak timing of snowmelt. Additional analysis on runoff indices using different trend analysis methods and different analysis periods also indicates limited changes in these runoff indices. Overall, these findings are meaningful in guiding reservoir operations and water resources planning and management practices.
  • Keywords:
  • Source:
    Hydrology, 5(1), 1
  • DOI:
  • ISSN:
    2306-5338
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1