Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest

Filetype[PDF-2.02 MB]



Details:

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Lifting condensation level (LCL) has long been used to estimate cloud base heights. However, spatial and temporal patterns of cloud bases embedded within atmospheric currents flowing over mountainous terrain still need to be more adequately described. To advance understanding, hourly observations of barometric pressure and ambient and dew point temperatures from 1948 to 2017 were acquired for seven airports located at 40.21° N (average) and crossing the Allegheny Mountains of the northeastern United States. Daily LCL trends were quantified, and large positive (2.3 m yr−1) and negative (−1.3 m yr−1) LCL trends were found to be greatest near seasonal transition dates (17 April and 9 November 2022). Cool season LCLs (795 m) increased significantly (p < 0.007) at five sites resulting in an average LCL increase of 81 m and implying a deeper and drier sub-cloud layer. Average warm season LCLs (773 m) decreased by 23 m, suggesting a deeper convective cloud layer and less sub-cloud evaporation that may facilitate higher hydrometeor growth and precipitation rates. Collective results indicate divergent seasonally averaged LCLs characterized by more rapid seasonal transitions, warmer and less cloudy cool seasons, and cloudier and more humid warm seasons that may be partly attributable to aggressive reforestation and contribute to more significant rainfall events and higher flood risks.
  • Keywords:
  • Source:
    Atmosphere, 14(1), 98
  • DOI:
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1