U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

System Predictability Assessed by Low Wavenumber Fourier Components and Analogue Pair Progression of Geopotential Height

Supporting Files Public Domain
File Language:


Details

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Following Lorenz’s work using analogue pairs for establishing 10-to-14-day predictability limits for synoptic weather regimes, predictability limits for the Rex block, the long-wave wintertime ridge over the eastern Pacific Ocean and the western United States, have been estimated. This was accomplished by using mid-latitude geopotential height reanalysis data over a period of 38 years, 1979–2016, and associated 90-day winters (DJF). The metric used to define analogue pairs is the RMS difference assessed for the hemispheric 850, 500, and 200 hPa geopotential height fields. The resultant set of analogue pairs was used to estimate predictability with respect to both a single latitude circle (40° N) that passes through the Rex Block and for a multi-latitude swath (20–80° N). Our methods showed a range of results, by choice of Fourier component wavenumbers 2 through 8. These results indicate system predictability for low wavenumber components to exceed the 10–14-day limit imposed by Lorenz’ results. The results to 21 days, the maximum predictability limit value allowed by our method, do not preclude the possibility of a greater range of system predictability past 21 days. The unique aspect of this work is determination of predictability limits as a function of geopotential wave structure found through Fourier decomposition.
  • Keywords:
  • Source:
    Atmosphere, 14(5), 886
  • DOI:
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:f79b97fe6e689319b2abd8de57d879fe6fab0d9adabe79bb2e2ce78c6acd004a
  • Download URL:
  • File Type:
    Filetype[PDF - 2.71 MB ]
File Language:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.