How Should a Numerical Weather Prediction Be Used: Full Field or Anomaly? A Conceptual Demonstration with a Lorenz Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

How Should a Numerical Weather Prediction Be Used: Full Field or Anomaly? A Conceptual Demonstration with a Lorenz Model

Filetype[PDF-9.40 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A forecast from a numerical weather prediction (NWP) model can be decomposed into model climate and anomaly. Each part contributes to forecast error. To avoid errors from model climate, an anomaly, rather than a full field, should be used in a model. Model climate is replaced by the observed climate to reconstruct a new forecast for application. Using a Lorenz model, which has similar error characteristics to an NWP model, the following results were obtained. (a) The new anomaly-based method can significantly and steadily increase forecast accuracy throughout the entire forecast period (28 model days). On average, the total forecast error was reduced ~25%, and the correlation was increased by ~100–200%. The correlation improvement increases with the increasing of forecast length. (b) The method has different impacts on different types of error. Bias error was almost eliminated (over 90% in reduction). However, the change in flow-dependent error was mixed: a slight reduction (~5%) for model day 1–14 forecasts and increase (~15%) for model day 15–28 forecasts on average. The larger anomaly forecast error leads to the worsening of flow-dependent error. (c) Bias error stems mainly from model climate prediction, while flow-dependent error is largely associated with anomaly forecast. The method works more effectively for a forecast that has larger bias and smaller flow-dependent error. (d) A more accurate anomaly forecast needs to be constructed relative to model climate rather than observed climate by taking advantage of cancelling model systematic error (i.e., perfect-model assumption). In principle, this approach can be applicable to any model-based prediction.
  • Keywords:
  • Source:
    Atmosphere, 13(9), 1487
  • DOI:
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1