An Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction

Filetype[PDF-1.56 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Wildland fire managers in the United States currently utilize the gridded forecasts from the National Digital Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large wildfires. However, little is known about the NDFDs performance in remote locations with complex topography for weather variables important for fire behavior prediction, including air temperature, relative humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone locations across the conterminous United States during periods with the potential for active fire spread using the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed well with RMSEs of about 2°C and 10%–11%, respectively. However, wind speed was increasingly underpredicted when observed wind speeds exceeded about 4 m s−1, with MFB and MBE values of approximately −15% and −0.5 m s−1, respectively. The importance of accurate wind speed forecasts in terms of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve “good” surface head fire rate-of-spread predictions were estimated as ±20%–30% of the observed wind speed. Weather station location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast error, although the relatively low variance explained by the model (~37%) suggests that other variables are likely to be important. Based on these results it is suggested that wildland fire managers should use caution when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.
  • Keywords:
  • Source:
    Weather and Forecasting, 33(1), 301-315
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1