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ABSTRACT

Wildland fire managers in the United States currently utilize the gridded forecasts from the National Digital
Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large
wildfires. However, little is known about the NDFDs performance in remote locations with complex to-
pography for weather variables important for fire behavior prediction, including air temperature, relative
humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone
locations across the conterminous United States during periods with the potential for active fire spread using
the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean
bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed
well with RMSE:s of about 2°C and 10%-11%, respectively. However, wind speed was increasingly under-
predicted when observed wind speeds exceeded about 4ms~!, with MFB and MBE values of
approximately —15% and —0.5ms ™!, respectively. The importance of accurate wind speed forecasts in terms
of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve ‘‘good’ surface head
fire rate-of-spread predictions were estimated as =20%-30% of the observed wind speed. Weather station
location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast
error, although the relatively low variance explained by the model (~37%) suggests that other variables are
likely to be important. Based on these results it is suggested that wildland fire managers should use caution
when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.

1. Introduction short- and long-term fire behavior and fire danger including
air temperature, relative humidity, and wind speed and
direction (Jolly 2009; Burgan et al. 1997). In particular,
decision-makers on large wildland fires utilize the NDFD
forecasts to aid in fire spread projections that guide strategic
decisions and inform tactical operations, which ultimately
affect private and public resources (Calkin et al. 2011).
Wildland fire behavior is primarily influenced by the local
fire environment, which includes the fuel, weather, and to-
pography in the area adjacent to the fire (Countryman
1966). Fuel and topography are usually considered static on
the time scales relevant for fire behavior prediction but
weather is both highly variable and dynamic (Barrows
1951). Several weather variables at small and large scales
can affect the dynamics of fire behavior, but near-surface air

The National Digital Forecast Database (NDFD) is a
seamless mosaic of gridded forecasts produced by the
National Weather Service (NWS) for public use and na-
tional preparedness (Glahn and Ruth 2003). Local forecasts
of sensible weather variables are compiled at each Weather
Forecast Office (WFO) based on numerical weather pre-
diction (NWP) models, observations, and forecaster expe-
rience; the forecasts are then stitched together at the
national level to produce the NDFD. Wildland fire man-
agers rely on the NDFD to provide accurate and timely
forecasts for weather variables that are known to affect both
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temperature and relative humidity, through its effects on
dead-fuel moisture, and wind speed and direction typically
have the largest impacts on fire rate of spread and intensity
(Cheney et al. 1993; Rothermel 1972). For example, fuel
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moisture tends to dampen fire spread as a result of the high
specific heat of water (Anderson 1969; Byram et al. 1952),
and the local wind field (Liu et al. 2015a; Sanderlin and
Sunderson 1975) enhances forward fire spread and intensity
by increasing both the rate of combustion and by directing
hot combustion products toward unburned fuels (Catchpole
et al. 1998; Albini 1982).

Near-surface wind speed and direction are affected by
terrain (Wakes et al. 2010) and vegetation (Linn et al.
2013) through mechanisms such as channeling or shelter-
ing. Local and large-scale variations in terrain shape, ori-
entation, and complexity can result in wind flows through
valleys that can override and/or enhance synoptic winds
(Weber and Kaufmann 1998). Likewise, vegetation type
and size can alter the magnitude of the wind flow near the
surface as a result of the effects of bulk drag from crown
foliage (Albini and Baughman 1979). Wildland fires often
occur in rugged terrain across a variety of vegetation types,
where near-surface wind, temperature, and moisture vary
substantially over space and time. Wagenbrenner et al.
(2016) reported that operational NWP models with hori-
zontal grid sizes larger than 1km are too coarse to predict
the variability in near-surface winds exhibited in complex
terrain. The finest NDFD grid currently available has a
horizontal resolution of 2.5km and, thus, would not be
expected to completely capture the range of variability
in near-surface weather in complex terrain. Higher-
resolution modeling in complex terrain may improve
predictions in some cases, but traditional NWP modeling
(e.g., with WRF), upon which the NDFD is at least par-
tially based, is limited to about 1-km horizontal grid reso-
lution because of limitations with discretization schemes
over steep slopes (e.g., Lundquist et al. 2010) and the
planetary boundary layer schemes used for turbulence
closure (Wyngaard 2004).

Previous verification studies of the NDFD have
shown that it generally produces accurate forecasts of air
temperature and precipitation for a variety of lead times
(Huntemann et al. 2015; Myrick and Horel 2006;
Dallavalle and Dagostaro 2004). However, the NDFD’s
suitability for wildland fire applications has not been
directly assessed. The routine verification procedures
currently in use for the NDFD (available online at http://
www.mdl.nws.noaa.gov/~verification/ndfd/) tend to be
weighted toward observations near urban centers (e.g.,
Ruth et al. 2009), as opposed to remote regions of complex
terrain where wildfires often occur. Additionally, the av-
eraging times used to compute model error statistics
(monthly) are large compared to time scales important for
wildland fire [from minutes to hours; e.g., Dagostaro et al.
(2004)]. Large averaging periods effectively smooth out
errors during rare, extreme events that, arguably, are the
most critical in terms of wildland fire behavior.
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Despite the lack of NDFD evaluation in fire-prone
regions, it is used to support wildland fire decision-
making. The Wildland Fire Decision Support System
(WFDSS; Noonan-Wright et al. 2011) is the suggested
decision support tool for large wildland fires in the United
States (NWCG 2009). WFDSS utilizes NDFD grids of air
temperature, relative humidity (RH), precipitation, cloud
cover, wind speed, and wind direction to aid in short- and
near-term fire behavior predictions (i.e., 1-7 days). The
forecast grids are used in conjunction with a number of
fire behavior models to estimate rate of spread, spread
direction, and intensity across diverse assemblages of
topography and fuels. NWS spot weather forecasts are
also requested by fire managers when time allows. These
spot weather forecasts are based, at least in part, on the
NDFD, but are typically expected to be more accurate
than raw NDFD predictions since forecaster expert
knowledge of the local and regional terrain and meteo-
rological conditions can be taken into account. However,
the accuracy of spot weather forecasts is not well known
and while requests for spot weather forecasts are en-
couraged, time constraints do not always allow for them.

This work provides an evaluation of the NDFD for
regions in the conterminous United States (CONUS)
susceptible to wildland fire and quantifies the associated
uncertainty in predicted fire behavior. The specific ob-
jectives were to 1) quantify the error in forecasted
weather variables (air temperature, relative humidity,
and wind speed) used for predicting surface head fire
rate of spread, 2) estimate and rank the importance of
NDFD forecast error for individual weather elements
on surface head fire rate-of-spread error, 3) estimate the
wind speed forecast accuracy needed to achieve “good”
surface head fire rate-of-spread predictions, and 4) de-
termine the geographic, meteorological, and human
factors that have the greatest influence on NDFD wind
speed forecast error.

2. Data and methods
a. Overview

Observed weather from surface weather stations
across the CONUS and hourly NDFD forecasts from
each observation station location for calendar year 2015
were compiled and merged with the relevant fire envi-
ronment variables required to make fire behavior pre-
dictions (Table 1). These data were used as inputs into
a semiempirical fire behavior model developed by
Rothermel (1972) and known as the Rothermel model,
which is applied throughout the United States for wild-
land fire management (Andrews 2014). Potential fire
behavior was predicted using both the observed and
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TABLE 1. Environmental variables needed to run Rothermel’s (1972) semiempirical fire behavior model.

Input variable Source

Description

Fuel model

LANDFIRE Fuel model (Scott and Burgan 2005) assigned to the grid cell where the

weather station was located (30-m resolution)

Estimated using Nelson’s (2000) dead-fuel moisture model based on
air temperature, RH, solar radiation, and precipitation
Calculated using 20-ft wind speed, vegetation sheltering, and equations

from Finney (2004) and Andrews (2012)

1-, 10-, and 100-h dead-fuel Data
moisture (% oven-dry weight)

Midflame wind speed (ms™?) Data

Slope (°) LANDFIRE

Slope assigned to the grid cell where the station was located

(30-m resolution)

Live fuel moisture (herbaceous and woody) Constant
(% oven-dry weight)

Herbaceous fuel moisture set to 30% and live woody fuel moisture set to
60%; note that not all fuel models required these inputs

forecasted data and analyzed to determine fire behavior
model sensitivity to forecast error (forecast — observed) for
the relevant weather variables. Based on those results, the
forecast accuracies needed to achieve good rate-of-spread
predictions were estimated. Additionally, the impact of
several geographic, meteorological, and human factors on
NDFD forecast error were assessed for the variable that
had the largest impact on predicted fire behavior.

b. Observed data

Hourly weather observations from across the CONUS
were obtained from available Remote Automated
Weather Stations (RAWS; available online at http:/
www.raws.dri.edu) and Automated Surface Observing
System (ASOS) weather stations (available online at
https://mesonet.agron.iastate.edu/request/download.
phtml) for calendar year 2015. The weather station
variables analyzed were air temperature, RH, 6-m (20 ft)
wind speed, precipitation, cloud cover, and solar radia-
tion. Note that in keeping with standard fire weather
terminology we will refer to the 6-m wind speed as the
20-ft wind speed throughout the rest of the paper. Station
transmit times (UTC) were rounded to the nearest hour
and units were converted to SI units. Wind speeds from
ASOS stations (10-m height) were converted to 20-ft
height assuming a logarithmic wind profile, neutral at-
mospheric stability, and roughness lengths of 0.01, 0.43,
and 1.0m for grass, brush, and timber fuel types, re-
spectively (Campbell and Norman 1998). Fuel type was
assigned based on each station’s fuel model (see section
2d) following Scott and Burgan (2005). Solar radiation
values for ASOS stations were estimated using the Solar
Position and Intensity (SOLPOS) algorithm (National
Renewable Energy Laboratory 2000) with corrections for
cloud cover following the procedures used to estimate the
state of the weather in the Weather Information Man-
agement System (NWCG 2003).

Partial or incomplete hourly weather observations
were removed, and quality control following CEFA
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(2007) was undertaken with one exception; precipitation
was allowed to exceed 51 mm in any single hour but was
constrained to the all-time record for a 24-h period for the
state in which the station was located. Additionally, ob-
servations were removed if the hourly change in air
temperature exceeded 30°C. The climate extremes used
to identify individual state thresholds for data removal for
air temperature, RH, wind speed, and precipitation were
obtained online [National Centers for Environmental
Information (NCEI); available online at https://www.
ncdc.noaa.gov/extremes/scec/records]. The quality con-
trol procedures resulted in the removal of approximately
5% and 20% of the ASOS and RAWS data, respectively.

c. Forecast data

The archived NDFD forecasts that were issued every
hour during calendar year 2015 were obtained online
(NCEIL available online at https://www.ncdc.noaa.gov/
data-access/model-data/model-datasets/national-digital-forecast-
database-ndfd). NDFD forecasts are available out to 168 h and
can be updated at the discretion of the WFO. Since there
can be multiple forecasts valid for a given hour, in this work
we only considered forecasts with a 1-h lead time (i.e., the
first time step in the forecast). Since forecast skill typically
decreases with forecast lead time, the 1-h lead time was
chosen to provide a best-case assessment of the NDFD.
The forecasted air temperature, RH, cloud cover, pre-
cipitation, and wind speed were extracted from the grid
point nearest to each station’s location and converted to SI
units. The 10-m wind speed was transformed to a 20-ft wind
speed assuming a logarithmic profile, neutral atmospheric
stability, and a roughness length corresponding to the fuel
type at the station location. Solar radiation was calculated
for each hour using SOLPOS with corrections for cloud
cover obtained from the NDFD forecast grids.

The 6-h quantitative precipitation forecast was converted
to an hourly precipitation forecast by dividing the total
forecast amount into equal proportions for each hour
within the forecast period. Although it is unlikely that
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TABLE 2. List of explanatory variables used in the analysis, their sources, and a brief description of their derivations.

Variable Source Description
Weather
Air temp (°C) Data Forecast error (predicted — observed) in hourly observations
RH (%) Data Forecast error (predicted — observed) in hourly observations, includes lagged
error up to 5h and the sum of the error over that time period
Wind speed (ms ™) Data Forecast error (predicted — observed) in hourly observations; percent error
[(predicted — observed)/observed] X 100 was also calculated.
Wind type (four levels) Data Type of observed wind (ms ™ 1): low (0-2), moderate (2—6), high (6-12), and very
high (>12)
Topography
Elevation (m) 30-m DEM Elevation of the grid cell where the station was located
Aspect (0-2) 30-m DEM Aspect at the station location, transformed to linear scale following Beers et al.
(1966)
Slope (°) 30-m DEM Slope of the grid cell where the station was located
Elevation range (m) GIS Difference between highest and lowest elevation within a 2.5 km X 2.5 km square
centered on the station location
Elevation std dev (m) GIS Standard deviation of elevation within a 2.5 km X 2.5 km square centered on the
station location
Landform (1-10) GIS Classified landform type for the grid cell where the station was located, derived
from the topographic position index; categories are 1) canyons, 2) midslope
drainages, 3) upland drainages, 4) U-shaped valleys, 5) plains, 6) open slopes,
7) upper slopes, 8) local ridges, 9) midslope ridges, and 10) mountaintops
Fuel
Canopy cover (%) LANDFIRE Percent cover of a tree canopy in a stand
Canopy height (m) LANDFIRE Avg height of the top of the canopy for a stand
Fuel type (timber vs nontimber) LANDFIRE Fire behavior fuel models aggregated by type: timber (timber understory, timber
litter, and slash blowdown) and nontimber (grass, grass—shrub, and shrub)
Miscellaneous
Station type (ASOS vs RAWS) Data Type of weather station
Distance to grid point (m) GIS Distance of weather station to nearest NDFD grid point
Elevation difference (m) GIS Difference (NDFD — station) in elevation between nearest NDFD grid point
and weather station
Distance to coast (km) GIS Distance of weather station to nearest coastline
Distance to city (km) GIS Distance of weather station to nearest city with population > 50 000
WFO (116 levels) GIS NWS WFO where weather station was located
GACC (9 levels) GIS GACC where the weather station was located
Month (1-12) Data Month of observation
Hour (0-23) Data Hour (local) of observation

precipitation would be evenly distributed over the 6-h time
frame, this simplification is expected to have minimal effect
on the results on average. Precipitation events that occur
later in the 6-h window will have little impact as the time
available for drying after the event is the same, but pre-
cipitation events that occur early in the 6-h window may
result in higher than expected dead-fuel moisture levels,
and thus lower fire behavior, as there would be less time
available for drying and dead-fuel moisture to decrease
after the event. As there is no basis to expect precipitation
events to happen early or later in the 6-h window, the net
effect is likely negligible.

d. Fuel and topography

Additional fuel and topographic information needed
to estimate dead-fuel moisture and run Rothermel’s
model were obtained from the LANDFIRE project (LF
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1.3.0; Rollins 2009). Specifically, the aspect, slope, ele-
vation, fire behavior fuel model (Scott and Burgan
2005), canopy height, and canopy cover were extracted
from the grid cell in which each station was located.
Those stations that were located on a nonburnable fuel
model were removed from the analysis. Additionally,
the fuel models extracted at each station location were
aggregated into two fuel type categories, timber (timber
understory, timber litter, and slash blowdown) and
nontimber (grass, grass—shrub, and shrub) to assess the
sensitivity of predicted fire behavior in horizontal versus
vertically oriented fuel beds to weather forecast error.
Dead-fuel moistures for the 1-, 10-, and 100-h fuel size
classes (Fosberg 1970) were estimated using an adap-
tation of the Nelson (2000) dead-fuel moisture model,
which computes a fuel moisture content (% oven-dry
weight) given inputs of air temperature, RH, solar
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FIG. 1. Locations of RAWS and ASOS weather stations used in the analysis by the GACC.

radiation, and cumulative rainfall. The dead-fuel mois-
ture model is a bookkeeping-type model (Viney 1991)
that estimates values with partial dependence on pre-
vious predictions. To accommodate this, the relevant
weather data were organized by station, sorted by date
and time, and processed with an initial starting fuel
temperature of 20°C and 5% moisture content. The
times required for dead-fuel moisture contents to sta-
bilize to the environmental conditions vary by size
class but are on the order of from hours to days for the
smallest dead-fuel size classes that drive fire behavior
(Rothermel 1983). Thus, the impact of the starting
moisture contents on predicted fire behavior is expected
to be minimal, particularly for those stations located in
the northern tier of the United States because we ex-
cluded observations prior to 1 April (see section 2g).
Live herbaceous and woody fuel moisture content levels
for all observations were set to 30% and 60%, re-
spectively, as these values represent typical fire season
conditions when herbaceous fuels have cured and live
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woody material is entering dormancy (Rothermel 1983;
Scott and Burgan 2005).

e. Fire behavior

The fuel and topographic information, combined with
an estimate of midflame wind speed, were used to cal-
culate the potential fire behavior for each set of hourly
observations (observed and forecast). Midflame wind
speed was estimated from the observed and forecasted
20-ft wind speed following Finney (2004) and Andrews
(2012), with canopy cover less than 5% classified as
unsheltered. The surface fire rate of spread in the
heading direction only (i.e., parallel to slope and wind)
was extracted from the fire behavior outputs and used to
conduct the analysis. The surface fire rate of spread
describes the speed of the flame front in surface fuels
that are typically within about 1.8m of the ground
(Rothermel 1983). This includes grasses, shrubs, and
timber litter but not the crown fuels associated with a
timbered overstory. Potential crown fire behavior was
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TABLE 3. Overall NDFD performance for several weather elements, including surface head fire rate of spread and dead-fuel moisture
content, according to the following model performance statistics: RMSE, MFB, and MBE. Results are reported for the full dataset

(all data) and for the data where the observed wind speed was =4 ms™ .

1

Variable Observed (mean = std dev) Forecasted (mean = std dev) RMSE MFB (%) MBE
All data
Air temp (°C) 19.7 = 85 19.4 = 8.6 22 -5.0 -0.30
RH (%) 414 192 442 £ 192 10.7 7.5 2.7
20-ft wind speed (ms ') 312211 3.63 =2.03 1.91 232 0.51
1-h fuel moisture (%) 10.1 = 4.3 16.3 = 16.1 16.0 22.0 6.2
10-h fuel moisture (%) 10.1 = 4.5 13.0 = 9.1 7.6 16.2 29
100-h fuel moisture (%) 91x53 11.0 = 8.3 7.0 12.1 1.9
Rate of spread (ms™ ') 0.071 = 0.1 0.066 * 10.0 0.081 —32.0 —0.005
Observed wind = 4ms™*
Air temp (°C) 204 =84 202 = 8.6 2.1 =35 -0.19
RH (%) 39.0 £ 18.0 414 £ 183 9.8 6.9 24
20-ft wind speed (ms~') 573 £ 1.75 519 +223 211 -14.8 -0.54
1-h fuel moisture (%) 94 £37 16.3 = 16.6 16.9 25.1 6.9
10-h fuel moisture (%) 97 x40 132+ 9.1 8.0 20.8 34
100-h fuel moisture (%) 91x54 10.8 = 8.1 7.1 11.1 1.7
Rate of spread (ms™') 0.141 = 0.150 0.101 = 0.140 0.117 —61.5 —0.04

excluded from the current analysis in order to avoid
confounding the influence of the weather variables on
two different fire behavior models. Additionally, the rate
of spread was the primary focus of the current evaluation
because it is the fire behavior characteristic that is most
directly correlated with near-surface weather and is an
important variable for wildland fire managers.

f- Explanatory variables

The effect of several explanatory variables (including
the weather, fuel, and topographic variables already
described) on forecast error was investigated (Table 2).
A 30-m digital elevation model (DEM) for the CONUS
was used to determine the landform (10 levels) for each
station based on the topographic position index (Jenness
2006). Terrain complexity was characterized using the
elevation range and the standard deviation of the ele-
vation calculated within a 2.5km X 2.5km window
centered on each station location (Santos-Alamillos
et al. 2013). Aspect was transformed to a linear range
between 0 and 2 following Beers et al. (1966), and dis-
tances to the coast and nearest NDFD grid point were
calculated within a geographical information system.
The distance between each weather station and the
nearest city with a population greater than 50000 was
also determined based on the 2010 U.S. Census (avail-
able online at https://www.census.gov/geo/maps-data/
data/tiger.html). The difference in elevation between
the nearest NDFD grid point and the weather station
was also included as a potential explanatory variable.

Additional explanatory variables were station type
(ASOS vs RAWS), month (1-12), and hour (0-23),
where hour was transformed from UTC to local time
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based on station location. The Weather Forecast Office
(116 levels) and the Geographic Area Coordination
Center (GACC; 9 levels) that each station was located
within were included to account for differences among
forecast methods and regional differences in fire weather.
To incorporate the effect of high wind speed events on
forecast error, the observed wind speed at each hour was
classified into four categories (ms~'); low (0-2), moder-
ate (2-6), high (6-12), and very high (>12).

g. Analysis

All variables were merged into a database consisting
of observed and forecasted weather, topography, fuel,
and resulting fire behavior for each date and time
present in the observed dataset, (i.e., forecast data were
removed where observed values were missing), which
was used to calculate various error statistics. Forecast
error for individual hourly observations was assessed
using raw error (predicted — observed) and for all ob-
servations using root-mean-square error (RMSE) and
mean bias error (MBE) following Willmott (1982),

N 2
RMSE = \/Z(yi%yi) and )

MBE = Z(yln_ yi)’ (2)

as well as mean fractional bias (MFB) following Boylan
and Russell (2006),

MFB =1y 0T

n (yi +y,
2

X 100, 3)
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where y, is the predicted value for the ith observation, y; is
the observed value for the ith observation, and # is the
total number of observations. Additionally, hourly rate of
spread was calculated as the percent error and as a mod-
ified z score (raw error/standard deviation of error by
station) to account for differences in fuel-type sensitivity
to wind speed. Wind speed error was also calculated on a
percent error basis to aid in the determination of the wind
speed accuracies needed for good rate-of-spread pre-
dictions. To incorporate the potential influence of RH
error on head fire rate of spread, at each time step seven
separate variables were calculated; the raw error was re-
corded for each of the previous 5 h, including the current
hour and the sum of the error over the same time period.
The rate-of-spread predictions were also classified as
good or bad following the recommendations of Cruz and
Alexander (2013). Specifically, based on an analysis of
several fire spread model evaluation datasets for seven fuel-
type groups, they determined that +=35% error of head fire
rate of spread was a reasonable standard for fire behavior
model adequacy (Cruz and Alexander 2013). Rate-of-
spread predictions that were within £35% error were
classified as good while all others were classified as bad.
Random forests (Breiman 2001) as implemented in the
randomForestSRC package (Ishwaran and Kogalur 2016)
in the R statistical package, version 3.3.2 (R Core Team
2015), were used for both classification and regression.
Random forests are a nonparametric ensemble learning
approach to data analysis that does not have distributional
assumptions, can utilize different types of data (e.g.,
continuous, ordinal) simultaneously, is robust to outliers,
can incorporate complex interactions in high-dimensional
data, and performs well with spatial data (Evans et al.
2011). The dependent variables were either regressed or
classified against the explanatory variables and outputs of
variable importance and partial dependence were evalu-
ated. Specifically, to address objective 2, rate-of-spread
error (modified z score) was regressed against forecast
error in the weather station variables to assess the relative
importance of individual sensible weather variables on
rate-of-spread error. To address objective 3, the classified
rate-of-spread predictions were regressed against forecast
error in the sensible weather variables to evaluate the de-
pendence of good and bad rate-of-spread predictions on
wind speed forecast error. Objective 4 was addressed by
regressing the wind speed forecast error, for all the data and
just the cases where the observed wind speed was = 4ms ™!,
against the full set of explanatory variables listed in Table 2.
The analysis focused on periods of active fire spread;
therefore, only those hours where head fire rate
of spread based on the observed data was =0.0056ms !
[i.e., 1 chh™';achain (ch) is a standard unit of length used
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in wildland fire; 1 ch = 66 ft] were analyzed. This spread-
rate threshold allows for the evaluation to focus on con-
ditions under which wildfires typically occur, that is,
conditions that promote active fire behavior that requires
fire suppression. Additionally, the hourly observations
were limited to periods considered to be during the po-
tential fire season to minimize bias due to snow cover.
Specifically, those stations located in the northern
GACC:s (Fig. 1) (i.e., Northwest, North Ops, Northern
Rockies, Great Basin, Rocky Mountain, and Eastern)
were limited to observations from 1 April to 1 November,
while those in the southern tier of the CONUS (i.e.,
South Ops, Southwest, and Southern) were not con-
strained by time of year. Although snow cover can exist
between 1 April and 1 November in the northern tier of
the CONUS and during the winter in the southern tier of
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FIG. 3. Mean fractional bias in 20-ft wind speed, binned by observed wind speed category and station
type. Values in the graph represent the RMSE for that particular combination of observed wind speed
and station type. The number of observations within each category is also shown, rounded to millions (M).

the CONUS, it was preferable to keep the time horizon
wide so as to include a larger number of potential fire
spread events. This assumption likely resulted in the in-
clusion of data where fire spread would not be possible
(i.e., snow is covering the surface fuel); however, this
should have little or no impact on the final results as the
underlying dependence of the fire behavior model on
NDFD forecast error remains unchanged. These con-
straints resulted in approximately 5.3 million hourly ob-
servations from 1217 RAWS and 807 ASOS stations
(Fig. 1). The data were further constrained to analyze
NDFD performance when the observed 20-ft wind speed
was =4ms ! (approximately 1.5 million observations).
For each random forests analysis approximately 130 000
hourly observations were randomly selected (with re-
placement) from the full dataset to construct the training
and testing datasets. Initial sensitivity testing indicated that
results were unchanged with larger sample sizes. The
number of “trees grown per forest” was set to 100 for all
analyses as the out-of-bag prediction error did not sub-
stantially decrease with additional trees (Oshiro et al.
2012). Additionally, variable importance was calculated
using the Breiman-Cutler permutation (Breiman 2001),
and the number of variables randomly selected at each
node split was set to p/3 for regression and sqrt(p)
for classification, where p is the number of variables.
Model validation was completed by assessing the variance
explained and the overall error rate for regression and
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classification, respectively, using both the out-of-bag sam-
ples and the test dataset.

3. Results
a. General NDFD forecast skill

NDFD forecasts for air temperature and RH from
both datasets (all and wind =4 ms ') produced RMSEs

20~ft wind speed error (ms™")
RH error (sum, %) -

RH error (1 hour previous, %) 4

RH error (2 hours previous, %) 4
RH error (3 hours previous, %) 4
RH error (4 hours previous, %) 4
RH error (current hour, %) -

RH error (5 hours previous, %) 4

Air temperature error (°C) 4

025 050 0.75
Variable importance

o
o

0.

FIG. 4. Variable importance for the measured weather station
variables, ranked from highest to lowest, obtained from the ran-
dom forests analysis of surface head fire rate-of-spread error
(modified z score) regressed against error in forecasted weather.
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TABLE 4. Random forests model evaluation statistics for each objective using both the out-of-bag and test datasets.

Objective
2 3 4 4
Analysis type Regression Classification Regression Regression
Dependent variable ROS error ROS error 20-ft wind speed error 20-ft wind speed error

(modified z score)

Validation (out of bag)

% variance explained 42 —

Overall error rate (%) — 28
Validation (test data)

% variance explained 42 —

Overall error rate (%) — 29

(good = 35%)

(forecast — observed) —
1

(forecast — observed) —

all data observed wind = 4ms~
37 27
37 27

of about 2°C and 10%-11%, respectively (Table 3).
Overall, the forecast bias during hours with significant
fire spread was toward slightly lower temperatures and
higher RH values than observed, but no apparent trend
in bias was evident when viewed over the entire range of
values in the dataset (Fig. 2). This skill in forecasting air
temperature and RH resulted in dead-fuel moisture
contents with RMSEs between 7% and 17%, with the
greatest error associated with the smallest dead-fuel size
class. Overall, the bias in dead-fuel moisture content was
toward wetter fuels (i.e., higher fuel moistures).

The NDFD generally overpredicted wind speed when
considering all the data, with an RMSE and MBE of 1.9
and 0.5 msfl; however, the data indicated a significant
and increasing underprediction bias when the observed
wind speed was =4 ms ™!, with an RMSE and an MBE of
2.1and —0.5ms ™', respectively (Table 3). Generally, as
the observed wind speed increased, the underprediction
bias in predicted wind speed also increased (Fig. 3).

b. Relative importance of forecast error on head fire
rate of spread

Surface head fire rate-of-spread error was most
strongly affected by the error in forecasted wind speed
(Fig. 4). The random forests model explained 42 % of the
variance in the modified surface rate-of-spread z score
with the wind speed error having more importance than
the next most important variable, the sum of the error in
RH during the previous 5h (Table 4). The error in
forecasted RH was slightly more important in the im-
mediately preceding hours (1-4) than in either the cur-
rent hour or Sh previous.

c. Accuracies for good surface head fire
rate-of-spread predictions

Classification of good and bad surface head fire rate-
of-spread predictions using the Cruz and Alexander
(2013) threshold of *£35% error resulted in an overall
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classification error rate of 28% (Table 4). The 20-ft wind
speed forecast accuracy needed to achieve a good sur-
face head fire rate-of-spread prediction varied according
to desired prediction accuracy (Fig. 5). At the 50%
probability threshold, the Cruz and Alexander (2013)
method required wind speed accuracies of approxi-
mately £20%-30% of the observed value.

d. Wind speed forecast error

Regression of the 20-ft wind speed error against the
full set of topographic, fuel, and miscellaneous variables
produced a model that explained 37% of the total var-
iance (Table 4). The most important variable affecting
NDFD wind speed forecast accuracy was wind type; that
is, as the observed wind speed increased, the 20-ft wind

1.00

o

~

o
1

Probability of a 'bad' prediction
o
o
o

o

N

o
L

00T %0 40 20 8 20 40 60 8o
20-ft wind speed error (% of observed)

FIG. 5. Partial dependence plot of 20-ft wind speed error (% of ob-
served) from random forests classification analysis of surface head fire
rate of spread using the Cruz and Alexander (2013) threshold of +35%
error. Partial dependence represents the marginal effect of the variable
after considering the average effect of the other variables. The gray area
represents the 95% confidence band around the regression line.
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FIG. 6. Variable importance for each explanatory variable obtained from the random
forests analysis of 20-ft wind speed error regressed against a set of topographic, fuel, and

miscellaneous variables (see Table 2).

speed error also increased (Fig. 6). The WFO and
GACC were also important variables with the most
pronounced differences apparent under wind speeds
that exceeded 12ms™' (Fig. 7). For example, some
WFOs and GACCs tended to have poorer high wind
speed forecasts than other WFOs or GACCs (Fig. 8).
When only wind speed events where the observed wind
was =4ms~ ' were considered, there was a decrease in
the total variance explained (27%) (Table 4), with the
WFO and GACC variables becoming most important.
However, the importance of the terrain complexity
variables increased. That is, as terrain complexity
increased (elevation standard deviation or elevation
range), the underprediction bias in wind speed forecast
error also increased (Fig. 9). The other explanatory
variables had a relatively minor influence on the wind
speed forecast error and are not discussed further.

4. Discussion
a. NDFD forecasts and fire behavior

The 1-h lead-time forecasts generally produced accu-
rate air temperature and RH values during 2015. Similar
to Myrick and Horel (2006), who focused on the western
United States during the 2003/04 winter season, we found
that the average forecast error for air temperature was
about 2°C. Within the context of the current study, the
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effect of accurate air temperature and RH forecasts on
fire behavior is through higher precision in the modeled
dead-fuel moisture content. Dead fuels, particularly fine
dead fuels (particle diameter < 6 mm), readily exchange
moisture with the atmosphere and reach equilibrium with
the environment over time scales dependent upon parti-
cle size (Fosberg and Deeming 1971). The time required
to reach equilibrium is generally on the order of hours,
even for the smallest dead-fuel particles, which delays the
impact of changing environmental conditions on dead-
fuel moisture content (Britton et al. 1973; Fosberg and
Deeming 1971). The importance of this delayed impact
was confirmed in our analysis that suggested it was the
cumulative effect of RH forecast error that was more
important to the rate-of-spread predictions than the
forecast error in any single hour. This dependency on a
relatively long time horizon makes it difficult to define
guidelines for acceptable forecast accuracy as the relative
importance of time on RH forecast error is not clear (i.e.,
the forecast error in some preceding hours is more im-
portant than others).

Across the CONUS the NDFD in 2015 tended to
overpredict the 20-ft wind speed; although, approxi-
mately 70% of the data occurred when the observed
wind was <4ms~'. When the dataset was subset to
periods when the observed wind speed was =4 ms ™!, the
wind speed forecasts became increasingly biased toward
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FIG. 7. Plots of predicted 20-ft wind speed error by WFO, binned by wind type, from the random forests model of
20-ft wind speed error regressed against a set of topographic, fuel, and miscellaneous variables (see Table 2).

underprediction. This is similar to previous work by Zhu
and Pi (2014), who also found that the NWS under-
predicted wind speeds when observed winds were
greater than about 89ms ', based on a historical
analysis of weather forecasts for 60 metropolitan areas
across the CONUS. In terms of the NDFD and its
current use in the wildland fire community, an over-
prediction of wind speed is more acceptable than an
underprediction as fire-spread projections are more
likely to be conservative (i.e., underestimating time of
arrival). This suggests that the NDFD wind speed fore-
casts are suitable for making surface fire rate-of-spread
predictions under most conditions. However, because of
the underprediction bias during high wind speeds, cau-
tion should be used when weather events that are asso-
ciated with high wind speeds are anticipated, such as
during thunderstorms and cold-front passage, as this will
result in fire spread predictions that overestimate the
time of arrival. This point is particularly important to fire
managers because wildfire case studies and fatality in-
vestigation reports have frequently recognized the links
between high wind speed events and large fire growth
(Butler and Reynolds 1997; Graham et al. 2011) and
firefighter fatalities (Alexander et al. 2015).
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The strong link between rate of spread and wind speed
found in the present study was anticipated as wind has
long been known to be an important factor in wild-
land fire spread. Previous sensitivity analyses of the
Rothermel model using Monte Carlo-based methods
(Jimenez et al. 2008; Liu et al. 2015b) or global sensi-
tivity analyses (Liu et al. 2015a) have demonstrated that
the predicted rate of spread is highly sensitive to wind
speed, which varies by fuel model, particularly for fuel
models associated with horizontally oriented fuel beds
such as timber litter (Rothermel 1972; Catchpole et al.
1993). Fire behavior model sensitivity to wind is desir-
able as wind is known to play a dominant role in con-
vective heat transfer (Cheney et al. 1998; Frankman
et al. 2013) and tends to be significantly correlated with
the rate of spread obtained from field measurements
(Cheney et al. 1993; Cruz et al. 2013).

Based on the present analysis, we propose that wind
speed forecasts should strive for accuracies within
+20%-30% of the observed value, as this is the window
when the predicted rate of spread is most likely to be
within £35% error. This desired forecast accuracy is
specific to the Rothermel model and is considered most
applicable at the national scale as the analysis was
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FIG. 8. Boxplots of predicted 20-ft wind speed error by GACC, binned by wind type, from the random forests model
of 20-ft wind speed error regressed against a set of topographic, fuel, and miscellaneous variables (see Table 2).
Abbreviations for the GACCs are Eastern, East; Great Basin, GB; North Ops, NOps; Northern Rockies, NR;
Northwest, NW; Rocky Mountain, RM; South Ops, SOps; Southern, South; and Southwest, SW.

focused on the average effect of wind speed error across
multiple fuel types and fuel models. It is expected that a
wider wind speed accuracy window would be acceptable
for predicting rate of spread in fuel models associated
with horizontally oriented fuel beds or for nonhead fire
spread directions. An artifact of the presentation of the
desired forecast accuracy as a percentage of the ob-
served wind speed is that it implies that increasing wind
speed forecast accuracy, in terms of the actual value, is
required at lower observed wind speeds. The reality of
wildland fire behavior prediction is that the accuracy of
rate-of-spread predictions under low wind conditions is
less important than at high wind speeds. Thus, emphasis
should be placed on achieving the forecast accuracy of
+20%-30% during higher wind speed conditions.

b. Wind speed forecast error

Analysis of the underlying factors controlling wind
speed forecast error within the NDFD indicated that
several variables could be important. The location of the
forecast, in terms of the WFO and GACC where it
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originated, was shown to be one of the more important
factors affecting the wind speed forecasts. This was
similar to the findings of Zhu and Pi (2014), who also
concluded that forecast accuracies for areas across the
CONUS were sensitive to geographic location. Assess-
ment of the differences in wind speed forecast error
between individual WFOs and GACCs is beyond
the scope of the current study. However, there are
potentially a number of factors that could be related to
these differences, including small-scale weather station
location/placement issues and unusual weather activity
for a particular region in 2015. Additionally, individual
forecaster intervention or WFO-specific methodologies
for interpreting and interpolating NWP model output
could help explain why some WFOs produced more
accurate high wind speed forecasts than others.

As demonstrated in previous studies (i.e., Wagenbrenner
et al. 2016), terrain complexity was identified as a significant
contributor to wind speed forecast error. Unresolved ter-
rain complexity hinders the ability of models to capture and
incorporate important terrain influences on wind speed
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FIG. 9. Predicted 20-ft wind speed error across increasing terrain
complexity. Terrain complexity was measured as (a) the standard
deviation of elevation (std) and (b) the difference between the highest
and lowest elevations (range) within a 2.5 km X 2.5 km window cen-
tered on the station location. Predictions are from the random forests
model of 20-ft wind speed error regressed against a set of topographic,
fuel, and miscellaneous variables (see Table 2). The gray area repre-
sents the 95% confidence band around the regression line.

(Butler et al. 2015), although promising techniques do exist
that can be utilized to help downscale coarse-grid wind
predictions to incorporate important terrain effects
(Wagenbrenner et al. 2016; Forthofer et al. 2014). De-
spite the factors described above, it should be noted that
the current analysis of wind speed forecast error
explained a relatively minor proportion of the total
variability. Additional variables such as the presence of
short-lived atmospheric boundaries and/or a more de-
tailed analysis with a smaller subset of weather stations
could likely significantly improve our understanding of
the factors controlling wind speed forecast error.

5. Conclusions

The NDFD is an important tool for wildland fire
managers in the United States as it allows them to pre-
dict fire behavior and subsequently assess its impacts to
firefighters and affected communities. The evaluation
during periods of active fire spread and in fire-prone
locations across the CONUS during 2015 revealed that
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the NDFD is capable of producing accurate air tem-
perature and RH forecasts, which is manifested in in-
creased precision in estimates of dead-fuel moisture.
Additionally, on the whole the NDFD produces wind
speed forecasts that are conservative in nature (i.e.,
overpredict wind speed). However, when wind speed
exceeds approximately 4ms~', the NDFD forecasts
display an increasing underprediction bias. This under-
prediction during high wind speeds is critical as those are
the times known to coincide with rapid fire rates of
spread and large fire growth. The underlying causes of
the wind speed forecast error remain largely unknown,
but appear to be related to spatial location, in terms of
specific WFO and geographic area, and terrain com-
plexity. Engagement of the wildland fire community by
NWS forecasters on the effective use of the NDFD wind
speed forecasts for fire behavior prediction, including
applying bias corrections or working within an envelope
of expected outcomes, will likely help facilitate better
predictions and address potential concerns. Future
evaluation of the NDFD should focus on determining
the underlying source of the underprediction bias in the
high wind speed forecasts. In the meantime, wildland
fire managers should be aware of the current limitations
of the NDFD and work toward utilizing additional tools
(e.g., spot weather forecasts) during critical fire weather
conditions.
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