Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean

Filetype[PDF-454.75 KB]



Details:

  • Journal Title:
    Fisheries Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Natural chemical markers (stable isotopes and trace elements) in otoliths of bigeye tuna (Thunnus obesus) and yellowfin tuna (T. albacares) were used to investigate their origin and spatial histories in the western and central Pacific Ocean (WCPO). Otolith chemistry of young-of-the-year (YOY) T. obesus and T. albacares from four regions in the WCPO was first determined and used to establish baseline chemical signatures for each region. Spatial variation in stable isotope ratios of YOY T. obesus and T. albacares was detected, with the most noticeable difference being depleted otolith δ18O values for both species from the far west equatorial and west equatorial regions relative to the central equatorial and Hawaii regions. Elemental ratios in otoliths were also quantified for YOY T. obesus and T. albacares collected in 2008, and several showed promise for distinguishing YOY T. obesus (Mg:Ca, Mn:Ca, and Ba:Ca) and T. albacares (Li:Ca and Sr:Ca). The natal origin of age-1 to age-2+ T. obesus and T. albacares was then determined for two regions of the WCPO, and mixed-stock analysis indicated that T. obesus and T. albacares in our west equatorial sample were almost entirely from local production, with a minor contribution from central equatorial waters. Similarly, T. albacares collected in Hawaii were exclusively from local sources; however, a large fraction of T. obesus in Hawaii were classified to the central equatorial region, suggesting that the movement of migrants from outside production zones (i.e., south of Hawaii) are important to Hawaii's domestic fishery.
  • Keywords:
  • Source:
    Fisheries Oceanography, 25(3), 277-291
  • DOI:
  • ISSN:
    1054-6006;1365-2419;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1