U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Trophic ecology of Caribbean sponges in the mesophotic zone



Details

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Sponges are a crucial component of Caribbean coral reef ecosystem structure and function. In the Caribbean, many sponges show a predictable increase in percent cover or abundance as depth increases from shallow (< 30 m) to mesophotic (30–150 m) depths. Given that sponge abundances are predicted to increase in the Caribbean as coral cover declines, understanding ecological factors that control their distribution is critical. Here we assess if sponge cover increases as depth increases into the mesophotic zone for three common Caribbean reef sponges, Xestospongia muta, Agelas tubulata, and Plakortis angulospiculatus, and use stable isotope analyses to determine whether shifts in trophic resource utilization along a shallow to mesophotic gradient occurred. Ecological surveys show that all target sponges significantly increase in percent cover as depth increases. Using bulk stable isotope analysis, we show that as depth increases there are increases in the δ13C and δ15N values, reflecting that all sponges consumed more heterotrophic picoplankton, with low C:N ratios in the mesophotic zone. However, compound‐specific isotope analysis of amino acids (CSIA‐AA) shows that there are species‐specific increases in δ13CAA and δ15NAA values. Xestospongia muta and P. angulospiculatus showed a reduced reliance on photoautotrophic resources as depth increased, while A. tubulata appears to rely on heterotrophy at all depths. The δ13CAA and δ15NAA values of these sponges also reflect species‐specific patterns of host utilization of both POM and dissolved organic matter (DOM), its subsequent re‐synthesis, and translocation, by their microbiomes.
  • Keywords:
  • Source:
    Limnology and Oceanography, 66(4), 1113-1124
  • DOI:
  • ISSN:
    0024-3590 ; 1939-5590
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:401571b08ed0e1eee5545a386feeb9a17891cdc9e71a584e4b2c7dc2426098b8
  • Download URL:
  • File Type:
    Filetype[PDF - 1.47 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.