The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Ion-transporting capacity and aerobic respiration of larval white seabass (Atractoscion nobilis) may be resilient to ocean acidification conditions
-
2021
-
-
Source: Science of The Total Environment, 791, 148285
Details:
-
Journal Title:Science of The Total Environment
-
Personal Author:
-
NOAA Program & Office:
-
Description:Ocean acidification (OA) has been proposed to increase the energetic demand for acid-base regulation at the expense of larval fish growth. Here, white seabass (Atractoscion nobilis) eggs and larvae were reared at control (542 ± 28 μatm) and elevated pCO2 (1831 ± 105 μatm) until five days post-fertilization (dpf). Skin ionocytes were identified by immunodetection of the Na+/K+-ATPase (NKA) enzyme. Larvae exposed to elevated pCO2 possessed significantly higher skin ionocyte number and density compared to control larvae. However, when ionocyte size was accounted for, the relative ionocyte area (a proxy for total ionoregulatory capacity) was unchanged. Similarly, there were no differences in relative NKA abundance, resting O2 consumption rate, and total length between control and treatment larvae at 5 dpf, nor in the rate at which relative ionocyte area and total length changed between 2 and 5 dpf. Altogether, our results suggest that OA conditions projected for the next century do not significantly affect the ionoregulatory capacity or energy consumption of larval white seabass. Finally, a retroactive analysis of the water in the recirculating aquarium system that housed the broodstock revealed the parents had been exposed to average pCO2 of ~1200 μatm for at least 3.5 years prior to this experiment. Future studies should investigate whether larval white seabass are naturally resilient to OA, or if this resilience is the result of parental chronic acclimation to OA, and/or from natural selection during spawning and fertilization in elevated pCO2.
-
Keywords:
-
Source:Science of The Total Environment, 791, 148285
-
DOI:
-
ISSN:0048-9697
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: