

1 **Ion-transporting capacity and aerobic respiration of larval white seabass**
2 **(*Atractoscion nobilis*) may be resilient to ocean acidification conditions**

3
4 Garfield T Kwan^{1,2*}, Sara G Shen^{1*†}, Mark Drawbridge³, David M Checkley, Jr. ¹, Martin
5 Tresguerres^{1†}

6 ¹ Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
7 ² National Oceanic and Atmospheric Administration Fisheries Service, Southwest Fisheries
8 Science Center, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA

9 ³ Hubbs-SeaWorld Research Institute, San Diego, CA, USA

10
11 *These authors contributed equally to this work; †Corresponding authors

12
13 **Keywords:** ocean acidification, Na^+/K^+ -ATPase, ionocyte, oxygen consumption,
14 transgenerational acclimation, recirculating aquarium system

15
16
17
18
19
20
21
22
23
24
25

26 **Abstract – 250 words currently**

27 Ocean acidification (OA) has been proposed to increase the energetic demand for acid-
28 base regulation at the expense of larval fish growth. Here, white seabass (*Atractoscion nobilis*)
29 eggs and larvae were reared at control ($542 \pm 28 \mu\text{atm}$) and elevated $p\text{CO}_2$ ($1,831 \pm 105 \mu\text{atm}$)
30 until five days post-fertilization (dpf). Skin ionocytes were identified by immunodetection of the
31 Na^+/K^+ -ATPase (NKA) enzyme. Larvae exposed to elevated $p\text{CO}_2$ possessed significantly
32 higher skin ionocyte number and density compared to control larvae. However, when ionocyte
33 size was accounted for, the relative ionocyte area (a proxy for total ionoregulatory capacity) was
34 unchanged. Similarly, there were no differences in relative NKA abundance, resting O_2
35 consumption rate, and total length between control and treatment larvae at 5 dpf, nor in the rate
36 at which relative ionocyte area and total length changed between 2–5 dpf. Altogether, our
37 results suggest that OA conditions projected for the next century do not significantly affect the
38 ionoregulatory capacity or energy consumption of larval white seabass. Finally, a retroactive
39 analysis of the water in the recirculating aquarium system that housed the broodstock revealed
40 the parents had been exposed to average $p\text{CO}_2$ of $\sim 1,200 \mu\text{atm}$ for at least 3.5 years prior to
41 this experiment. Future studies should investigate whether larval white seabass are naturally
42 resilient to OA, or if this resilience is the result of parental chronic acclimation to OA, and/or from
43 natural selection during spawning and fertilization in elevated $p\text{CO}_2$.

44

45 **Research Highlights**

46

- 47 • Larval white seabass were lab-exposed to elevated CO_2 levels simulating future ocean
acidification (OA).
- 48 • Exposure to OA did not induce any changes in ion-transporting capacity, aerobic
respiration rate, or total length of larval white seabass.

50 • Retroactive analysis of the water in broodstock tanks revealed the parents had been
51 chronically exposed to elevated CO₂ levels, which may have affected the physiology of
52 the larvae and conferred the observed resilience.

53
54

55 **Introduction**

56 The survival of fish during the early life stages is the serendipitous outcome of a
57 favorable combination of oceanographic, hydrographic, climatic, biological, and trophodynamic
58 factors (Houde, 2009). Without the ability to swim, fish eggs, embryos and pre-flexion larvae
59 may be advected offshore to suboptimal habitat, consumed by zooplankton and other predators,
60 or starve before finding suitable prey (Hjort, 1926; Houde, 2009). As a result of the
61 environment's strong control over recruitment dynamics, mortality is high and variable during the
62 vulnerable early life stages (Beaugrand et al., 2003; Houde, 2009). Of particular concern is the
63 impacts of climate change on larval fish survival. Under 'business-as-usual' emission scenarios,
64 the average partial pressure of carbon dioxide (pCO₂) in the global surface ocean is projected to
65 reach ~1,000 μ atm by the year 2100 and ~2,000 μ atm by the year 2300, with a corresponding
66 decrease in pH from current levels of ~8.0 down to ~7.7 and ~7.4 respectively (Caldeira and
67 Wickett, 2003, 2005; Meehl et al., 2007; Goodwin et al., 2018; Bindoff et al., 2019). This
68 phenomenon, "ocean acidification" (OA), may further challenge survival during the early life
69 stages through disturbances to acid-base homeostasis leading to physiological, energetic, or
70 behavioral alterations (Heuer and Grosell, 2014; Esbaugh, 2017; Tresguerres and Hamilton,
71 2017).

72 Many of the reported potentially negative effects of OA on fish larvae have been
73 attributed to their lack of gill and their Na⁺/K⁺-ATPase-rich (NKA) ionocytes (e.g. Ishimatsu et al.,
74 2008; Frommel et al., 2011; Baumann et al., 2012; Pimentel et al., 2014, 2015), the primary
75 organ for blood acid-base regulation (reviewed in Evans et al., 2005). However, this explanation

76 dismisses the NKA-rich ionocytes found on the skin of embryonic and larval fishes (Varsamos et
77 al., 2002; Dahlke et al., 2017, 2020; Kwan et al., 2019a; reviewed in Glover et al., 2013). As the
78 larvae grow and their gills develop, the abundance of larval skin ionocyte decreases as the ion-
79 transport requirements are increasingly fulfilled by the gill ionocytes (Ayson et al., 1994; Hiroi et
80 al., 1998, 1999; Varsamos et al., 2002; Kwan et al., 2019a). Recently, the ion-transporting
81 capacity of larval skin ionocytes has been shown to be comparable to that of their adult
82 counterpart, the gill ionocytes (Dahlke et al., 2020). Yet despite their differences in spatial
83 localization, both skin and gill ionocytes rely on basolateral NKA to generate an electrochemical
84 gradient necessary for maintaining osmotic and acid-base homeostasis. As a result, the
85 immunostaining and quantification of NKA-rich ionocytes on the larva's epithelial surface can
86 serve as a useful proxy for the ion-transporting capacity and underlying energetic demand.

87 The few studies that have explored the effects of OA on larval fish ionocytes found no
88 significant differences in skin density (Dahlke et al., 2017), NKA expression, or NKA activity
89 (Dahlke et al., 2020). Nonetheless, the increased otolith size and neurobehavioral alterations
90 observed during exposure to elevated $p\text{CO}_2$ indicate that both larval and adult fishes maintain
91 blood pH homeostasis by excreting H^+ and accumulating HCO_3^- (reviewed in Tresguerres and
92 Hamilton, 2017). This putative upregulation in acid-base homeostasis during OA exposure could
93 entail increased energy consumption, which in turn could impair larval development and growth
94 (Pimentel et al., 2014; Dahlke et al., 2017, 2020).

95 Basal energy consumption is commonly assessed through measurements of resting
96 oxygen (O_2) consumption rate (rOCR) and somatic size (e.g. total length). Previous studies on
97 the effects of OA on fish larvae reported diverse and variable results, with rOCR and body size
98 increasing, decreasing, or remaining unchanged (Munday et al., 2009, 2016; Baumann et al.,
99 2012; Miller et al., 2012; Bignami et al., 2013; Pimentel et al., 2014, 2015; Flynn et al., 2015;
100 Rossi et al., 2015; Murray et al., 2016; Dahlke et al., 2017). As proposed in some of those
101 studies, the variation in responses may be due to differences in $p\text{CO}_2/\text{pH}$ exposure levels,

102 duration, or unidentified species-specific physiological mechanisms that determined their
103 differential vulnerability to OA. In addition, some studies have suggested the possibility of
104 transgenerational acclimation (Miller et al., 2012; Munday, 2014; Murray et al., 2014; Cattano et
105 al., 2016; Stiasny et al., 2018), whereby the duration and magnitude of the parental exposure to
106 OA could positively affect their offspring's responses.

107 Aquaculture facilities can be an invaluable partner to research and fisheries
108 management institutions, particularly through their ability to supply fish of ecological,
109 commercial, or recreational importance for experiments. Broodstock may reside in recirculating
110 aquarium systems (RAS) — aquaria with limited water exchange and controlled water
111 parameters that prevent the growth of wild water-borne pathogens. Broodstock respiration
112 typically result in elevated $p\text{CO}_2$ within the RAS at levels comparable to, and in many cases,
113 greatly exceeding OA projections (reviewed in Ellis et al., 2016). However, due to the difficulty of
114 reliably attaining wild-caught larvae and the challenges involved in spawning and raising larvae,
115 aquaculture facilities are often the sole provider of larval fish for experimental research.

116 The Hubbs-SeaWorld Research Institute (HSWRI) in Carlsbad (California, USA) is the
117 primary hatchery contractor for California's Ocean Resources Enhancement and Hatchery
118 Program (OREHP) administered by the California Department of Fish and Wildlife. In an effort to
119 replenish natural populations, HSWRI has been breeding and rearing white seabass
120 (*Atractoscion nobilis*) within RAS for release into the Southern California Bight since 1986
121 (Vojkovich and Crooke, 2001; Hervas et al., 2010). Broodstock and early life stages are
122 maintained in RAS for environmental control and biosecurity before being moved into flow
123 through systems and then acclimation cages prior to release as juveniles (Drawbridge et al.,
124 2021). HSWRI is also a long-term collaborator with the Scripps Institution of Oceanography
125 (SIO) at the University of California, San Diego, and this partnership has contributed to novel
126 insights supporting early observations of the impacts of elevated $p\text{CO}_2$ on fish larvae (Checkley
127 et al., 2009). Two studies demonstrated significantly larger otoliths in larval white seabass pre-

128 flexion larvae after exposure to 2500 μatm $p\text{CO}_2$ (Checkley et al., 2009a; Shen et al., 2016).
129 However, exposure to elevated $p\text{CO}_2$ and the ensuing enlarged utricular otoliths did not
130 significantly impact the larva's vestibular function (Shen et al., 2016). The intention of this study
131 is to expand upon these morphological and behavioral observations through an exploration of
132 other aspects of larval white seabass physiology.

133 In this study, we exposed larval white seabass to control $p\text{CO}_2$ ($560 \pm 32 \mu\text{atm}$) and
134 elevated $p\text{CO}_2$ reflective of projected OA conditions ($1971 \pm 55 \mu\text{atm}$) during the first five days
135 post-fertilization (dpf). We hypothesized that exposure to OA conditions would induce an
136 upregulation in acid-base machinery and corresponding increase in energy consumption. We
137 proposed these physiological changes would be evident in the analysis of the skin ionocytes,
138 relative NKA abundance, rOCR, and total length. A retroactive analysis of HSWRI RAS
139 seawater chemistry records offered insights into broodstock conditions, and provided critical
140 parental life history context to further understand our findings.

141

142 **Materials and Methods**

143 Animal care and experimental procedures were approved by Institutional Animal Care
144 and Use Committee at the University of California, San Diego under protocol S12161.

145

146 ***White seabass broodstock RAS conditions and egg collection***

147 HSWRI routinely monitors and records broodstock RAS water conditions, including
148 temperature every 15 minutes (RCK Controls; CA, USA), salinity and total alkalinity every week
149 (Pinpoint®; American Marine, CT, USA, and HACH digital titrator (HACH, CO, USA), and O_2
150 and pH twice per day (HACH40d multimeter with LDO101 and PHC101 probes). Soda ash
151 (Na_2CO_3) is added to RAS seawater as needed to maintain stable pH level as commonly
152 performed by aquaculture facilities utilizing RAS. Seawater $p\text{CO}_2$ was calculated with CO2SYS

153 using the recorded temperature, salinity, pH, and total alkalinity data. The accuracy of HSWRI's
154 pH measurements was validated using the purified m-cresol purple method on discrete
155 seawater samples as described below.

156 Larvae were spawned from adult white seabass (12 males and 12 females; >61 cm and
157 >9.1 kg at the time of capture) that were captured in the wild between 2009 and 2012 and kept
158 within RAS at HSWRI. Spawning at HSWRI is induced through photothermal manipulation by
159 increasing 'daytime' duration from 10 to 14 hours, and by raising seawater temperature from
160 14°C to 18°C to mimic the warmer spawning season. Fertilization occurs within the RAS and
161 viable eggs float to the surface and are gently collected with a mesh at the outflow. In our study,
162 eggs were collected on three separate occasions (June 15, June 29, and July 28, 2016) for
163 three replicate experiments (EXP 1 – 3). For EXP 1, 2, and 3, the pH of the broodstock RAS at
164 the time of egg collection was 7.39, 7.39, and 7.53, respectively. Fertilized white seabass eggs
165 were transported to SIO within 12 hours post-fertilization for inspection and initiation of
166 experiments.

167

168 ***Experimental pCO₂ conditions***

169 White seabass eggs were observed using a light microscope; undamaged, fertilized
170 eggs were transferred into 5-L water-jacketed (18°C) glass vessels (400 eggs/vessel) and
171 larvae were reared until 5 dpf. The vessels contained filtered seawater continuously bubbled
172 with certified air-CO₂ gas mixture resulting in average *pCO₂* of 560 ± 32 µatm and pH of 7.92 ±
173 0.02 (control), and *pCO₂* of 1971 ± 55 µatm and pH of 7.42 ± 0.03 (OA-exposed) (Supp. Table
174 1). The experiment was repeated three times, with each experiment having three vessels per
175 treatment. High mortality was detected in one control and one OA-exposed vessel within EXP 3
176 for unknown reasons, and these two vessels were excluded from analysis.

177 At the end of the 5-day exposure, subsets of larvae were selected for microrespirometry
178 or euthanized with tricaine methanesulfonate (0.5 g l⁻¹) and processed for
179 immunohistochemistry or Western blotting. In EXP 1 and EXP 2, total length was measured
180 immediately after euthanasia under a dissection microscope. In EXP 3, 2 – 4 dpf larvae were
181 additionally sampled for total length measurements and immunohistochemistry.

182 At the end of each experiment, 250-mL seawater samples were collected from each
183 vessel and poisoned with 100 µL of mercuric chloride for inorganic carbon chemistry
184 measurements. A_T and dissolved inorganic carbon chemistry (DIC) were measured by the
185 Dickson laboratory (SIO) using open-cell potentiometric titration and coulometry, respectively.
186 The software CO₂Calc (Robbins et al., 2010) was used to estimate pH and pCO₂ from the
187 measured A_T and DIC.

188

189 ***Immunohistochemistry***

190 Larvae were fixed in 3% paraformaldehyde, 0.35% glutaraldehyde, 0.1 M cacodylate
191 buffer (catalog number: 15949; Electron Microscopy Sciences, Hatfield, PA, USA) for 4 hours at
192 room temperature, transferred to 50% ethanol overnight, and stored in 70% ethanol. Whole-
193 mount immunostaining was performed using the Vectastain® Universal HRP R.T.U. kit (Vector
194 Laboratories, Inc., Burlingame, CA, USA) following a previously described protocol (Kwan et al.,
195 2019b, a), and the α5 mouse monoclonal anti-NKA antibody (1.5 µg/mL) (Lebovitz et al., 1989)
196 (Developmental Studies Hybridoma Bank; Iowa University). This antibody is routinely used for
197 detecting NKA in fish (Melzner et al., 2009; Yang et al., 2013; Tang et al., 2014; Kwan et al.,
198 2019a, 2020).

199 Immunostained larvae were imaged on a Leica DMR compound microscope (Leica
200 Microsystems, Inc., Buffalo Grove, IL, USA) attached to a Canon Rebel T3i SLR camera and
201 processed as previously described in detail (Kwan et al., 2019b). Briefly, the images were focal-
202 stacked using Helicon Focus software (HeliconSoft, Kharkov, Ukraine) and stitched using

203 Adobe Photoshop CS6 (Adobe Systems, San Jose, USA). Ionocytes were identified by intense
204 NKA-immunostaining. Relative ionocyte area (RIA) was calculated as the number of cutaneous
205 ionocytes multiplied by their average area, and divided by the larva's surface area (Kwan et al.,
206 2019a, b). Readers are referred to Kwan et al., 2019b for further methodological details.
207 Measurements were made using the freehand tool from FIJI (Schindelin et al., 2012) and a
208 Wacom Intuos tablet (Saitama, Japan).

209

210 ***Western blotting***

211 Larvae were flash frozen in liquid N₂ and stored at -80°C. Frozen larvae pooled from
212 each vessel were pulverized in liquid N₂ by mortar and pestle, mixed in ice-cold homogenization
213 buffer (250 mmol l⁻¹ sucrose, 1 mmol l⁻¹ EDTA, 30 mmol l⁻¹ Tris, 10 mmol l⁻¹ BHH, 1 mmol l⁻¹
214 PMSF, 1 mmol l⁻¹ DTT, pH 7.5), and centrifuged at 500 g for 10 min at 4°C to remove debris.
215 The supernatant was saved ("crude homogenate"), and its total protein concentration was
216 determined by Bradford Protein Assay. An additional sample that was not part of the
217 experiments was designated as the standard and loaded into every gel to normalize results
218 across immunoblots. Western blotting was performed as previously described (Kwan et al.,
219 2019a, 2020), with 5 µg of total protein from each sample or standard loaded into a separate
220 lane of the gels. The bands were imaged using the ChemiDoc™ MP system (Bio-Rad
221 Laboratories, Inc., Hercules, CA, USA). The NKA antibody recognized a single band at the
222 expected ~100 kDa (Supp. Fig. 2). Relative NKA abundance in each lane was quantified using
223 Image Lab™ (Bio-Rad Laboratories, Inc.) and normalized relative to the standard.

224

225 ***Resting oxygen consumption rate***

226 Larval resting O₂ consumption rate (rOCR) was measured using a Unisense
227 MicroRespiration System and SensorTrace Rate software (Unisense A/S, Aarhus, Denmark).
228 Ten larvae were removed from each vessel, and duplicate groups of five larvae were placed into

229 two 4-mL glass microrespiration chambers containing seawater from the respective vessel. The
230 seawater in the microrespirometry chamber was maintained at 18°C by immersion into a water
231 bath, and stirred at 600 rpm using a glass-embedded micromagnet. OCR measurements of
232 groups of larvae are common given their small size (Cattano et al., 2016; Peck and Moyano,
233 2016).

234 After a 10 min acclimation period, O₂ concentration in the chamber was measured every
235 second for 50 min. Larvae behavior was observed for 1 min every 15 min. Background microbial
236 respiration rate was measured in chambers containing seawater only. The slope of the linear
237 regression of O₂ concentration over time was taken as the rOCR for each group of five larvae.
238 Duplicate measurements for each vessel were averaged and background microbial respiration
239 was subtracted. The rOCR of an individual larva was estimated by dividing the group's rOCR by
240 five. Statistical analyses were performed on these individual-based rOCR (µL O₂ ind⁻¹ h⁻¹)
241 estimates.

242

243 **Data analysis**

244 Statistical analyses were performed in GraphPad Prism (version 7.0a). Normality was
245 assessed with the Shapiro-Wilks test. An alpha level of 0.05 was used for significance in all
246 statistical tests. Linear regression was used to assess changes in RIA as a function of pCO₂ for
247 larvae between 2 - 5 dpf. RIA, relative NKA abundance, rOCR, and total length were analyzed
248 using two-tailed *t*-test. All experimental mean ± SEM, sample size, and statistical values are
249 reported in Supp. Table 2.

250

251 **Results**

252 In EXP 1 and 2, we measured the total length of freshly-sacrificed 5 dpf larvae, and
253 found that it was not significantly affected by OA exposure (*p* = 0.6473; Fig. 1A; Supp. Table 3).
254 In EXP 3, we collected and fixed larvae between 2 and 5 dpf to investigate potential effects on

255 growth rate. Similarly, OA exposure did not affect the larval white seabass' growth rate ($p =$
256 0.4470; Fig. 1B; Supp. Table 4).

257 Immunostaining of 5 dpf larvae revealed the cutaneous NKA-rich ionocytes were
258 concentrated on the anterior end of both control and OA-exposed larvae (Supp. Fig. 4). OA-
259 exposed larvae had a significantly higher number of ionocytes than control larvae ($p = 0.0410$;
260 Fig. 2A; Supp. Table 5). Since the total larva surface area was virtually identical between
261 treatments ($p > 0.9999$; Supp. Table 5), OA-exposed larvae had a significantly higher ionocyte
262 density compared to control larvae ($p = 0.0008$; Fig. 2B; Supp. Table 5). However, ionocytes of
263 OA-exposed larvae tended to be smaller than those of control larvae ($p = 0.0840$; Fig. 2C;
264 Supp. Table 5). As a result, there were no differences in RIA between the control and OA-
265 exposed larvae at 5 dpf ($p = 0.6129$; Fig. 2D; Supp. Table 5) indicative of similar total cutaneous
266 ion-transporting capacities. This result was in alignment with the Western blot analysis showing
267 a lack of significant difference in NKA abundance between OA-exposed and control larvae ($p =$
268 0.2156; Fig. 2E; Supp. Fig. 2; Supp. Table 6). Similarly, the rate at which larval RIA decreased
269 over the 2 to 5 dpf developmental period (Fig. 3) was not affected by OA exposure ($p = 0.6855$;
270 Figure 2F; Supp. Table 4).

271 Throughout microrespiration trials from EXP 1 and 2, larvae from both treatments
272 remained largely inactive during experiments, occasionally engaging in swimming bursts to re-
273 orient themselves. We found oxygen declined linearly as a result of larval respiration, but there
274 were no significant differences in rOCR between OA-exposed and control larvae ($p = 0.928$; Fig.
275 4; Supp. Table 7).

276 The lack of any major physiological differences between control larvae and those
277 exposed to elevated $p\text{CO}_2$ led us to conduct a retrospective analysis of the broodstock RAS
278 seawater chemistry. Records indicated that the parents of the larval white seabass used in our
279 study were exposed to an average of $\sim 1,200 \mu\text{atm } p\text{CO}_2$ ($\text{pH } \sim 7.6$) at least 3.5 years prior to our
280 experiment (Fig. 5A, B). The average total alkalinity, dissolved O_2 (DO), temperature, and

281 salinity was $2289 \pm 23 \mu\text{mol kg}^{-1} \text{ SW}^{-1}$, $9.10 \pm 0.05 \text{ mg/L}$, $15.9 \pm 2.3^\circ\text{C}$, and $33.65 \pm 0.03 \text{ ppt}$,
282 respectively (Supp. Fig. 3). Furthermore, on the days the eggs were collected for our
283 experiments, the pH of the outflowing water was 7.39 ($\sim 2,073 \pm 42 \mu\text{atm}$), 7.36 ($\sim 2,236 \pm 45$
284 μatm), and 7.53 ($\sim 1,470 \pm 15 \mu\text{atm}$). Therefore, the RAS's $p\text{CO}_2$ levels are not only comparable
285 to predicted OA-levels for the year 2300, but also analogous to our larval white seabass'
286 experimental conditions.

287

288 **Discussion**

289 We hypothesized that exposure to elevated $p\text{CO}_2$ would increase the demand for ion-
290 transport to maintain acid-base homeostasis by white seabass larvae, which would be reflected
291 in higher RIA, NKA abundance, and rOCR. Contrary to our hypothesis, none of these variables
292 were significantly different between control and OA-exposed larvae. Additionally, we did not
293 detect differences in the growth parameters analyzed. Furthermore, our total length
294 measurements were consistent with two previous larval white seabass OA studies (Checkley et
295 al., 2009b; Shen et al., 2016), thereby ruling out developmental differences. Altogether, our
296 results indicate that white seabass larvae were able to cope with the elevated $p\text{CO}_2$ levels
297 without significant ion-regulatory adjustments or any major additional energetic cost.
298 Alternatively, the acid-base machinery and energetics of larval white seabass might have been
299 affected in ways that were not measured in our experiment. Additionally, it remains unclear
300 whether the chronic exposure to elevated $p\text{CO}_2$ within the broodstock tank could have had an
301 effect on the larva's physiology, for example, through natural selection or transgenerational
302 acclimation.

303 NKA is abundantly expressed in larval skin ionocytes, which allows for the identification
304 and quantification of these ion-transporting cells using whole larva immunohistochemistry.
305 Because NKA is the main driving force for ion-transport in marine fish, RIA and NKA abundance

306 serve as proxies for ion-transporting capacity and its underlying energy demand. Traditionally,
307 the ion-transporting capacity of fish larvae was estimated based on skin ionocyte density in a
308 specific area of the fish (Ayson et al., 1994; Hiroi et al., 1998, 1999; Varsamos et al., 2002). In
309 our experiment, skin ionocyte density in OA-exposed larvae was higher than in control larvae;
310 however, ion-transporting capacity also depends on ionocyte size. To address this issue, we
311 estimated RIA by measuring both ionocyte number and size as well as the surface area of the
312 entire immunostained larvae. In doing so, RIA is a more accurate proxy for ion-transporting
313 capacity than ionocyte density (Kwan et al., 2019a, b). Interestingly, OA-exposed larvae had
314 smaller average ionocyte size than control larvae. Although the difference in ionocyte size was
315 not statistically significant, it resulted in OA-exposed and control larvae having similar RIA.
316 Since these ionocytes have irregular shapes, we could not use simple math to calculate
317 ionocyte volume. Instead, we used Western blotting to quantify total NKA protein within whole
318 larvae as another proxy for ion-transporting capacity. This approach revealed lower total NKA
319 abundance in OA-exposed larvae compared to control larvae, but the difference was not
320 statistically significant. Taken together, our results suggest that the ion-transporting capacities of
321 OA-exposed and control larvae are similar, and that the observed differences in some of the
322 parameters were due to inherent variability of the larvae and techniques.

323 Estimation of ion-transport capacity by immunodetecting NKA via immunohistochemistry
324 and Western blotting is a powerful approach because it considers both the number and size of
325 ionocytes in relation to larval size, as well as total NKA protein abundance. Since NKA is the
326 most ATP-demanding step of ion-transport, NKA abundance serves as a proxy for energy
327 utilization. However, the quantification of NKA abundance has various limitations that must be
328 considered. In addition to H⁺ excretion, the marine fish's NKA-rich ionocyte is also used for NaCl
329 excretion to maintain nominal blood osmolarity, and presumably also NH₄⁺ excretion and Ca²⁺
330 homeostasis (reviewed in Evans et al., 2005; Glover et al., 2013). Therefore, a putative increase
331 in NKA abundance to upregulate H⁺ excretion may not be detectable given the relatively high

332 baseline levels from existing multi-functional physiological roles of the NKA-rich ionocyte.
333 Furthermore, larval fishes grow at a very fast rate (Finn and Kapoor, 2008), and their rapidly
334 metabolizing tissue determine rOCRs that are 50-80% higher than that of juveniles and adults
335 (Post and Lee, 1996). As a result, the proportionally higher CO₂ production in larval fish coupled
336 with their high reliance on ammonia-producing amino-acid catabolism (Finn et al., 2002) could
337 entail an intrinsically high capacity for acid-base regulation that is sufficient to cope with the
338 effects of OA without any major adjustments in NKA abundance or rOCR. Alternatively, the
339 putative upregulation of H⁺ excretion could have been achieved by increasing the abundance of
340 other ion-transporting proteins such as Na⁺/H⁺ exchangers, Na⁺/HCO₃⁻ cotransporters, and
341 carbonic anhydrases that were not measured in our experiment.

342 The significant increase in protein biosynthesis or turnover rate should have been
343 reflected in the rOCR measurements. For example, sea urchin and oyster larvae exposed to
344 comparable pCO₂ levels demonstrated both increased rOCR and protein turnover rates (Pan et
345 al., 2015; Frieder et al., 2018). Alternatively, while we did not find evidence of increased protein
346 biosynthesis, OA may have affected metabolic energy allocation. Since 5 dpf white seabass
347 larvae still completely rely on their yolk sacs as their energy source (Moser et al., 1983), the
348 allocation of energy towards protein biosynthesis would reduce the amount of energy available
349 for other processes. Further studies examining protein biosynthesis are necessary to better
350 understand the energetic responses of larval fishes to OA, which could be especially important
351 in the presence of other stressors that impose additional energetic demand.

352 The retroactive analysis of HSWRI broodstock RAS conditions revealed an average
353 pCO₂ of ~1,200 μ atm during the 3.5 years prior to our experiments, and occasionally approached
354 ~3,000 μ atm. As a consequence, the broodstock fish were chronically acclimated to elevated
355 pCO₂ levels comparable to OA conditions predicted for the next century (Caldeira and Wickett,
356 2003, 2005; Goodwin et al., 2018; Bindoff et al., 2019). This raises the question of whether
357 transgenerational acclimation influenced the larval white seabass physiology within our study,

358 and possibly contributing to the lack of significant differences between OA-exposed and control
359 larvae. There is growing evidence indicating parental exposure to a given stressor may enhance
360 offspring performance (reviewed in Donelson et al., 2018). Some possibilities include the
361 maternal transmission of more efficient mitochondria [as proposed for Three-Spine Stickleback
362 (*Gasterosteus aculeatus*) under thermal stress (Shama et al., 2014)] and of enhanced non-
363 bicarbonate buffering capacity [(suggested for Atlantic Cod (*Gadus morhua*) embryos (Dahlke et
364 al., 2020)], and epigenetic modulation [as proposed for Spiny Damselfish (*Acanthochromis*
365 *polyacanthus*) exposed to OA (Schunter et al., 2018)]. Interestingly, white seabass spawning,
366 fertilization, and early embryo development also occur within the HSWRI RAS, and thus
367 gametes and embryos are exposed to elevated $p\text{CO}_2$ during these crucial life stages. This
368 suggests the possibilities of natural selection and developmental plasticity resulting in OA-
369 resilient gametes, embryos, and larvae. Interestingly, if these effects indeed existed, the release
370 of juveniles through OREHP (Vojkovich and Crooke, 2001; California Department of Fish and
371 Game, 2002; Hervas et al., 2010) into the local ecosystem could be an example of an assisted
372 evolution strategy similar to that proposed for coral reef resiliency (Van Oppen et al., 2015).

373 However, studying parental effects, developmental plasticity, and transgenerational
374 mechanisms require a stringent experimental design (Donelson et al., 2018). Since our study
375 was not designed to answer these questions, it cannot discern whether the broodstock's chronic
376 exposure to elevated $p\text{CO}_2$ had any effect on larval fitness. Nevertheless, the results presented
377 here present a useful blueprint for future experiments, which, in addition to white seabass larvae
378 from parental broodstock chronically acclimated to elevated $p\text{CO}_2$, must include larvae from
379 broodstock acclimated to past- or present-day CO_2 levels (the "environmental" and "ambient"
380 controls discussed in Donelson et al. (2018). These types of studies will not be trivial due to the
381 challenges associated with maintaining broodstock fish at different CO_2 levels during extended
382 periods of time, achieving spawning, and rearing larvae. Performing these studies are further
383 complicated by the relatively short duration of research funding schemes, student programs,

384 and postdoctoral researcher contracts. With this in mind, it will remain crucial to continue to
385 foster partnerships between academia and aquaculture facilities, which will allow to tackle
386 essential questions that require extended experimentation periods such as transgenerational
387 acclimation.

388 In conclusion, the lack of differences in RIA, NKA abundance, rOCR, and length
389 obtained in the current study indicates that White Seabass larvae are able to cope with OA
390 without major alterations in ion-transporting capacity, energy consumption, or growth when
391 exposed to elevated $p\text{CO}_2$ ($\sim 2000 \mu\text{atm}$) projected for the next century. However, in-depth
392 analyses provided hints for potential novel effects such as changes in ionocyte size, and helped
393 identify the need for more detailed studies about the basic physiology of marine fish larvae, their
394 energy allocation in response to OA and multi-stressors, and the potential for transgenerational
395 acclimation through parental effects, developmental plasticity, and natural selection. This
396 highlights the difficulty of ascribing potential effects of OA on marine organisms based on acute
397 laboratory studies. Finally, we would like to emphasize the importance of collaborations with
398 aquaculture facilities, such as HSWRI, to continue advancing our understanding on the impacts
399 of OA on fish.

400

401

402 **Competing interests**

403 No competing interests declared.

404

405 **Author contributions**

406 S.G.S., G.T.K, M.T., and D.M.C. designed research; S.G.S. and G.T.K. performed research;
407 S.G.S., G.T.K., and M.T. analyzed results and wrote the manuscript. M.D. provided historical
408 data on white seabass broodstock holding conditions. D.M.C and M.D. provided guidance and
409 reviewed draft manuscripts. All authors gave final approval for publication.

410

411 **Acknowledgements**

412 GTK was funded by the San Diego Fellowship, NSF GRFP, and the NSF Postdoctoral
413 Research Fellowship in Biology (award: 1907334). SGS was funded by the National Science
414 Foundation (NSF) Graduate Research Fellowship Program (GRFP). We thank Erica Bromby-
415 Fanning, Eric McIntire, Sabrina Sobel, Christy Varga, and other personnel at HSWRI for
416 providing fertilized white seabass eggs and seawater data. HSWRI's contributions were made
417 possible by the OREHP that funds this portion of the hatchery operations. We are grateful to Dr.
418 Lauren Linsmayer and to Dr. Greg Rouse (SIO) for assisting in the microrespiration experiments
419 and loan of the microscope and camera system, respectively. We appreciate Dr. Andrew
420 Dickson and Dr. David Cervantes for general guidance and seawater chemistry analysis.

421

422 **Data availability**

423 All data are available in our supplemental materials.

424

425 **References**

426 Ayson FG, Kaneko T, Hasegawa S, Hirano T (1994) Development of mitochondrion-rich cells in
427 the yolk-sac membrane of embryos and larvae of tilapia, *Oreochromis mossambicus*, in
428 fresh water and seawater. *J Exp Zool* 270:129–135. doi: 10.1002/jez.1402700202
429 Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in
430 direct response to increased carbon dioxide. *Nat Clim Chang* 2:38–41. doi:
431 10.1038/nclimate1291
432 Beaugrand G, Brander KM, Lindley JA, et al (2003) Plankton effect on cod recruitment. *Nature*
433 426:661–664.
434 Bignami S, Sponaugle S, Cowen RK (2013) Response to ocean acidification in larvae of a large
435 tropical marine fish, *Rachycentron canadum*. *Glob Chang Biol* 19:996–1006. doi:
436 10.1111/gcb.12133
437 Bindoff NL, Cheung WWL, Kairo JG, et al (2019) Changing Ocean, Marine Ecosystems, and
438 Dependent Communities. *IPCC Spec Rep Ocean Cryosph a Chang Clim* 447–588.
439 Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. *Nature*
440 425:365. doi: 10.1038/425365a
441 Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon
442 dioxide emissions to the atmosphere and ocean. *J Geophys Res C-Oceans* 110:12 pp.-12
443 pp. doi: 10.1029/2004jc002671
444 Cattano C, Giomi F, Milazzo M (2016) Effects of ocean acidification on embryonic respiration

445 and development of a temperate wrasse living along a natural CO₂ gradient. *Conserv*
446 *Physiol* 4:1–10. doi: 10.1093/conphys/cov073

447 CDFG (2002) White seabass fishery management plan (WSFMP). Los Alamitos

448 Checkley DM, Dickson AG, Takahashi M, et al (2009a) Elevated CO₂ Enhances Otolith Growth
449 in Young Fish: Supplemental Material. *Science* (80-) 324:1683–1683. doi:
450 10.1126/science.1169806

451 Checkley DM, Dickson AG, Takahashi M, et al (2009b) Elevated CO₂ enhances otolith growth
452 in young fish. *Science* 324:1683. doi: 10.1126/science.1169806

453 Dahlke FT, Leo E, Mark FC, et al (2017) Effects of ocean acidification increase embryonic
454 sensitivity to thermal extremes in Atlantic cod, *Gadus morhua*. *Glob Chang Biol* 23:1499–
455 1510. doi: 10.1111/gcb.13527

456 Dahlke FT, Lucassen M, Bickmeyer U, et al (2020) Fish embryo vulnerability to combined
457 acidification and warming coincides with a low capacity for homeostatic regulation. *J Exp*
458 *Biol* 223:jeb212589. doi: 10.1242/jeb.212589

459 Donelson JM, Salinas S, Munday PL, Shama LNS (2018) Transgenerational plasticity and
460 climate change experiments: Where do we go from here? *Glob Chang Biol* 24:13–34. doi:
461 10.1111/gcb.13903

462 Drawbridge M, Shane M, Silbernagel C (2021) The status of white seabass, *Atractoscion nobilis*
463 as a commercially ready species for marine US aquaculture. *J World Aquac Soc* 1–15. doi:
464 10.1111/jwas.12772

465 Ellis RP, Urbina MA, Wilson RW (2016) Lessons from two high CO₂ worlds - future oceans and
466 intensive aquaculture. *Glob Chang Biol* 2100:1–8. doi: 10.1111/gcb.13515

467 Esbbaugh AJ (2017) Physiological implications of ocean acidification for marine fish: emerging
468 patterns and new insights. *J Comp Physiol B* 0:0. doi: 10.1007/s00360-017-1105-6

469 Evans DH, Piermarini PM, Choe KP (2005) The Multifunctional Fish Gill: Dominant Site of Gas
470 Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste.
471 *Physiol Rev* 85:97–177. doi: 10.1152/physrev.00050.2003

472 Finn RN, Rønnestad I, Van der Meeran T, Fyhn HJ (2002) Fuel and metabolic scaling during
473 the early life stages of Atlantic cod *Gadus morhua*. *Mar Ecol Prog Ser* 243:217–234. doi:
474 10.3354/meps243217

475 Finn RN, Kapoor B (2008) Fish Larval Physiology.

476 Flynn EE, Bjelde BE, Miller NA, Todgham AE (2015) Ocean acidification exerts negative effects
477 during warming conditions in a developing Antarctic fish. *Conserv Physiol* 3:1–16. doi:
478 10.1093/conphys/cov033

479 Frieder CA, Applebaum SL, Pan TCF, Manahan DT (2018) Shifting balance of protein synthesis
480 and degradation sets a threshold for larval growth under environmental stress. *Biol Bull*
481 234:45–57. doi: 10.1086/696830

482 Frommel AY, Maneja R, Lowe D, et al (2011) Severe tissue damage in Atlantic cod larvae under
483 increasing ocean acidification. *Nat Clim Chang* 2:42–46. doi: 10.1038/nclimate1324

484 Glover CN, Bucking C, Wood CM (2013) The skin of fish as a transport epithelium: A review. *J*
485 *Comp Physiol B Biochem Syst Environ Physiol* 183:877–891. doi: 10.1007/s00360-013-
486 0761-4

487 Goodwin P, Brown S, Haigh ID, et al (2018) Adjusting Mitigation Pathways to Stabilize Climate
488 at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300. *Earth's Futur* 6:601–615.
489 doi: 10.1002/2017EF000732

490 Hervas S, Lorenzen K, Shane MA, Drawbridge MA (2010) Quantitative assessment of a white
491 seabass (*Atractoscion nobilis*) stock enhancement program in California: Post-release
492 dispersal, growth and survival. *Fish Res* 105:237–243. doi: 10.1016/j.fishres.2010.06.001

493 Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean
494 acidification on fish. *AJP Regul Integr Comp Physiol* 307:R1061–R1084. doi:
495 10.1152/ajpregu.00064.2014

496 Hiroi J, Kaneko T, Seikai T, Tanaka M (1998) Developmental sequence of chloride cells in the
497 body skin and gills of Japanese Flounder (*Paralichthys olivaceus*) larvae. *Zoolog Sci*
498 15:455–60. doi: 10.2108/0289-0003(1998)15[455:DSOCCI]2.0.CO;2

499 Hiroi J, Kaneko T, Tanaka M (1999) In vivo sequential changes in chloride cell morphology in
500 the yolk-sac membrane of Mozambique tilapia (*Oreochromis mossambicus*) embryos and
501 larvae during seawater adaptation. *J Exp Biol* 202:3485–3495.

502 Hjort J (1926) Fluctuations in the year classes of important food fishes. *J Cons int Explor Mer*
503 1:5–38.

504 Houde ED (2009) Recruitment variability. In: *Fish Reproductive Biology: Implications for*
505 *Assessment and Management*. Wiley-Blackwell, West Sussex, pp 91–171

506 Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO₂, acidified oceans. *Mar Ecol Prog Ser* 373:295–302. doi: 10.3354/meps07823

507 Kwan GT, Wexler JB, Wegner NC, Tresguerres M (2019a) Ontogenetic changes in cutaneous
508 and branchial ionocytes and morphology in yellowfin tuna (*Thunnus albacares*) larvae. *J*
509 *Comp Physiol B Biochem Syst Environ Physiol* 189:81–95. doi: 10.1007/s00360-018-1187-
510 9

511 Kwan GT, Finnerty SH, Wegner NC, Tresguerres M (2019b) Quantification of Cutaneous
512 Ionocytes in Small Aquatic Organisms. *Bio-protocol* 9:e3227. doi: 10.21769/BioProtoc.3227

513 Kwan GT, Smith TR, Tresguerres M (2020) Immunological characterization of two types of
514 ionocytes in the inner ear epithelium of Pacific Chub Mackerel (*Scomber japonicus*). *J*
515 *Comp Physiol B* 190:419–431. doi: 10.1007/s00360-020-01276-3

516 Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of
517 the (Na⁺ + K⁺)-ATPase alpha-subunit in *Drosophila melanogaster*. *EMBO J* 8:193–202.

518 Meehl GA, Stocker TF, Collins WD, et al (2007) 2007: Global climate projections. In: *Climate*
519 *Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the*
520 *Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, UK,
521 pp 747–846

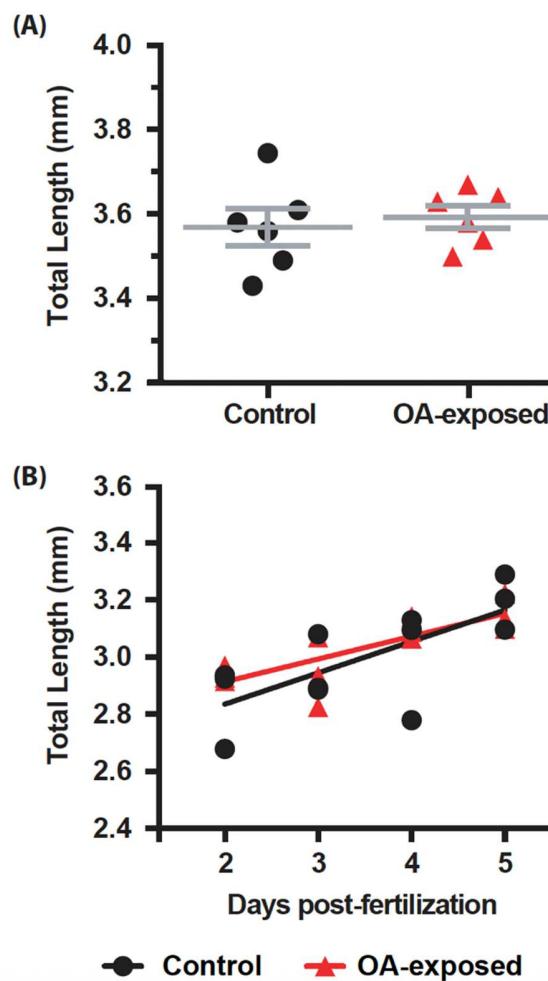
522 Melzner F, Gutowska M a., Langenbuch M, et al (2009) Physiological basis for high CO₂
523 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?
524 *Biogeosciences Discuss* 6:4693–4738. doi: 10.5194/bgd-6-4693-2009

525 Miller GM, Watson SA, Donelson JM, et al (2012) Parental environment mediates impacts of
526 increased carbon dioxide on a coral reef fish. *Nat Clim Chang* 2:858–861. doi:
527 10.1038/nclimate1599

528 Moser GH, Ambrose DA, Busby MS, et al (1983) Description of early stages of white seabass,
529 *Atractoscion nobilis*, with notes on distribution. *CalCOFI Rep* 24:182–193.

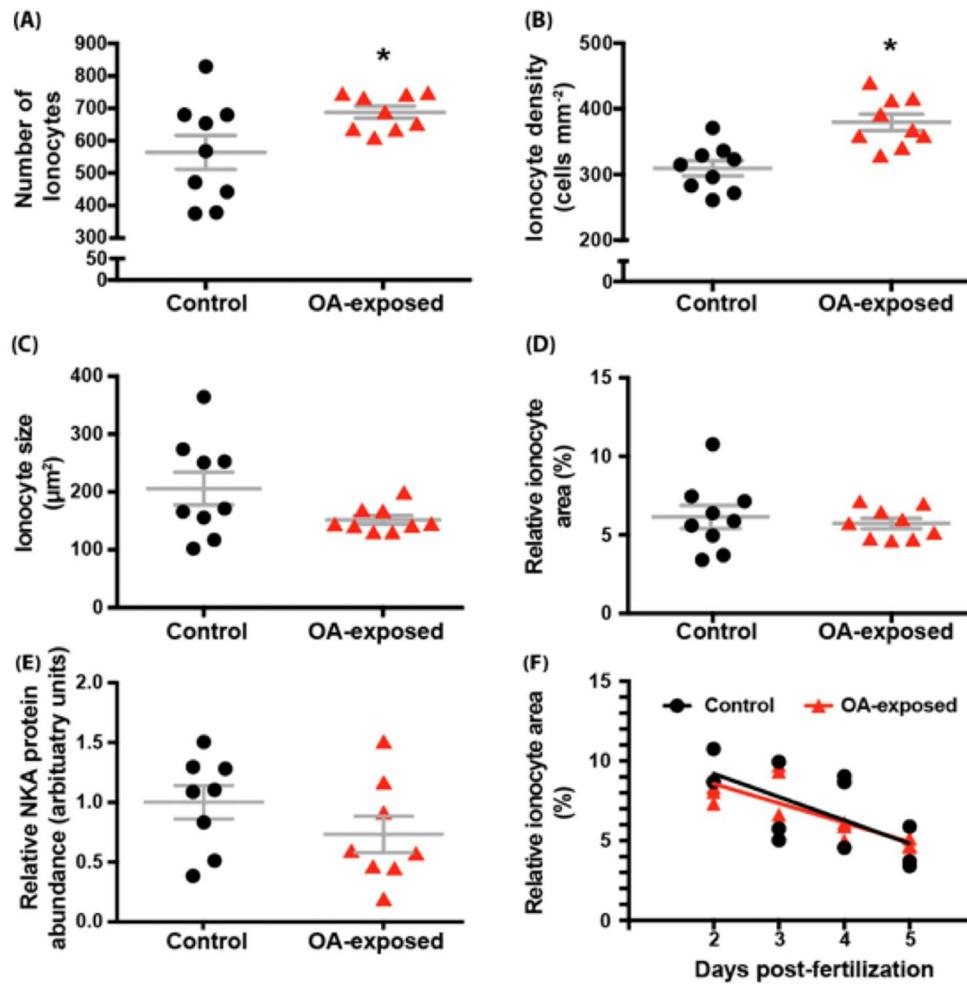
530 Munday PL, Donelson JM, Dixson DL, Endo GGK (2009) Effects of ocean acidification on the
531 early life history of a tropical marine fish. *Proc R Soc B Biol Sci* 276:3275–3283. doi:
532 10.1098/rspb.2009.0784

533 Munday PL (2014) Transgenerational acclimation of fishes to climate change and ocean
534 acidification. *F1000Prime Rep* 6:1–7. doi: 10.12703/P6-99


535 Munday PL, Watson S-A, Parsons DM, et al (2016) Effects of elevated CO₂ on early life history
536 development of the yellowtail kingfish, *Seriola lalandi*, a large pelagic fish. *ICES J Mar Sci J*
537 *du Cons* 73:641–649. doi: 10.1093/icesjms/fsv210

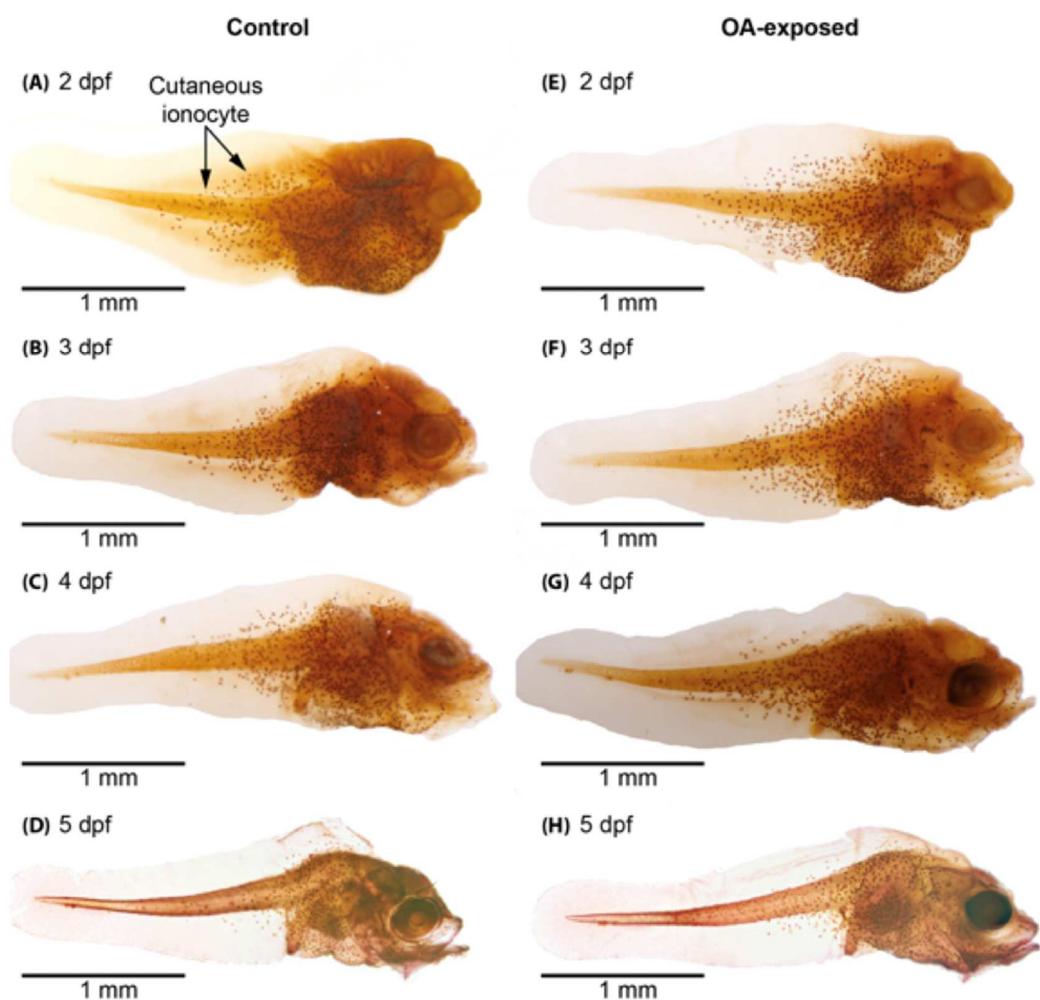
538 Murray C, Malvezzi A, Gobler C, Baumann H (2014) Offspring sensitivity to ocean acidification
539 changes seasonally in a coastal marine fish. *Mar Ecol Prog Ser* 504:1–11. doi:
540 10.3354/meps10791

541 Murray CS, Fuiman LA, Baumann H (2016) Consequences of elevated CO₂ exposure across
542 multiple life stages in a coastal forage fish. *ICES J Mar Sci J du Cons fsw179*. doi:
543 10.1093/icesjms/fsw179

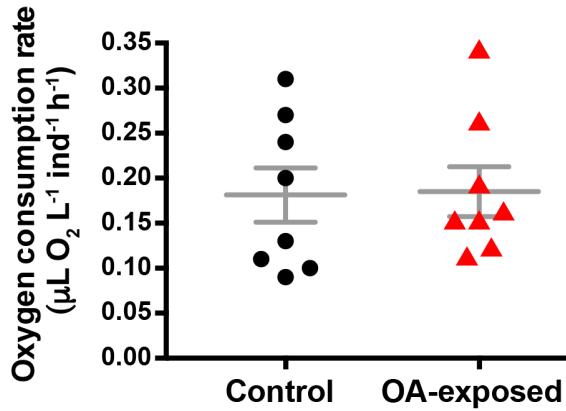

544 Pan TCF, Applebaum SL, Manahan DT (2015) Experimental ocean acidification alters the
545 allocation of metabolic energy. *Proc Natl Acad Sci U S A* 112:4696–4701. doi:
546

547 10.1073/pnas.1416967112
548 Peck MA, Moyano M (2016) Measuring respiration rates in marine fish larvae: Challenges and
549 advances. *J Fish Biol* 88:173–205. doi: 10.1111/jfb.12810
550 Pimentel MS, Faleiro F, Dionisio G, et al (2014) Defective skeletogenesis and oversized otoliths
551 in fish early stages in a changing ocean. *J Exp Biol* 217:2062–2070. doi:
552 10.1242/jeb.092635
553 Pimentel MS, Faleiro F, Diniz M, et al (2015) Oxidative Stress and Digestive Enzyme Activity of
554 Flatfish Larvae in a Changing Ocean. *PLoS One* 10:e0134082. doi:
555 10.1371/journal.pone.0134082
556 Post J, Lee J (1996) Metabolic ontogeny of teleost fishes. *Can J Fish Aquat Sci* 53:910–923.
557 doi: 10.1139/f95-278
558 Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2Calc - A user-friendly seawater carbon
559 calculator for Windows, Max OS X, and iOS (iPhone). 1–17.
560 Rossi T, Nagelkerken I, Simpson SD, et al (2015) Ocean acidification boosts larval fish
561 development but reduces the window of opportunity for successful settlement. *Proc R Soc
562 B Biol Sci* 282:20151954. doi: 10.1098/rspb.2015.1954
563 Schindelin J, Arganda-Carreras I, Frise E, et al (2012) Fiji: an open-source platform for
564 biological-image analysis. *Nat Methods* 9:676–682. doi: 10.1038/nmeth.2019
565 Schunter C, Welch MJ, Nilsson GE, et al (2018) An interplay between plasticity and parental
566 phenotype determines impacts of ocean acidification on a reef fish. *Nat Ecol Evol* 2:334–
567 342. doi: 10.1038/s41559-017-0428-8
568 Shama LNS, Strobel A, Mark FC, Wegner KM (2014) Transgenerational plasticity in marine
569 sticklebacks: Maternal effects mediate impacts of a warming ocean. *Funct Ecol* 28:1482–
570 1493. doi: 10.1111/1365-2435.12280
571 Shen SG, Chen F, Schoppik DE, Checkley DM (2016) Otolith size and the vestibulo-ocular
572 reflex of larvae of white seabass *Atractoscion nobilis* at high pCO₂. *Mar Ecol Prog Ser*
573 553:173–182. doi: 10.3354/meps11791
574 Stiasny MH, Mittermayer FH, Göttler G, et al (2018) Effects of parental acclimation and energy
575 limitation in response to high CO₂ exposure in Atlantic cod. *Sci Rep* 1–8. doi:
576 10.1038/s41598-018-26711-y
577 Tang CH, Leu MY, Yang WK, Tsai SC (2014) Exploration of the mechanisms of protein quality
578 control and osmoregulation in gills of *Chromis viridis* in response to reduced salinity. *Fish
579 Physiol Biochem* 40:1533–1546. doi: 10.1007/s10695-014-9946-3
580 Tresguerres M, Hamilton TJ (2017) Acid-base physiology, neurobiology and behaviour in
581 relation to CO₂ -induced ocean acidification. *J Exp Biol* 220:2136–2148. doi:
582 10.1242/jeb.144113
583 Van Oppen MJH, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through
584 assisted evolution. *Proc Natl Acad Sci U S A* 112:2307–2313. doi:
585 10.1073/pnas.1422301112
586 Varsamos S, Diaz J, Charmantier G, et al (2002) Location and morphology of chloride cells
587 during the post-embryonic development of the European sea bass, *Dicentrarchus labrax*.
588 *Anat Embryol (Berl)* 205:203–213. doi: 10.1007/s00429-002-0231-3
589 Vojkovich M, Crooke S (2001) White Seabass. In: California's living resources: a status report.
590 Cal Fish Game, Sacramento, pp 206–208
591 Yang W, Kang C, Chang C, et al (2013) Expression Profiles of Branchial FXYD Proteins in the
592 Brackish Medaka *Oryzias dancena*: A Potential Saltwater Fish Model for Studies of
593 Osmoregulation. doi: 10.1371/journal.pone.0055470
594
595

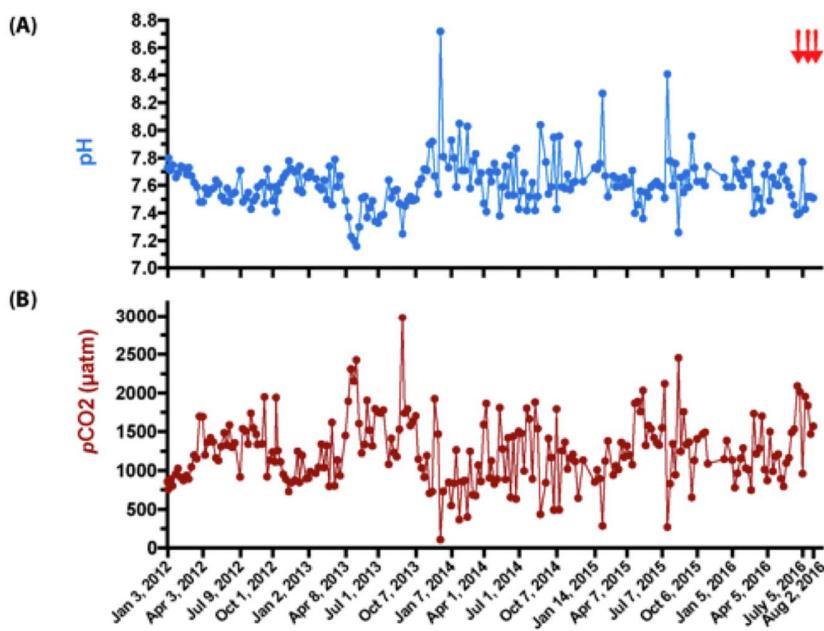
597 **Figures and Tables**


598

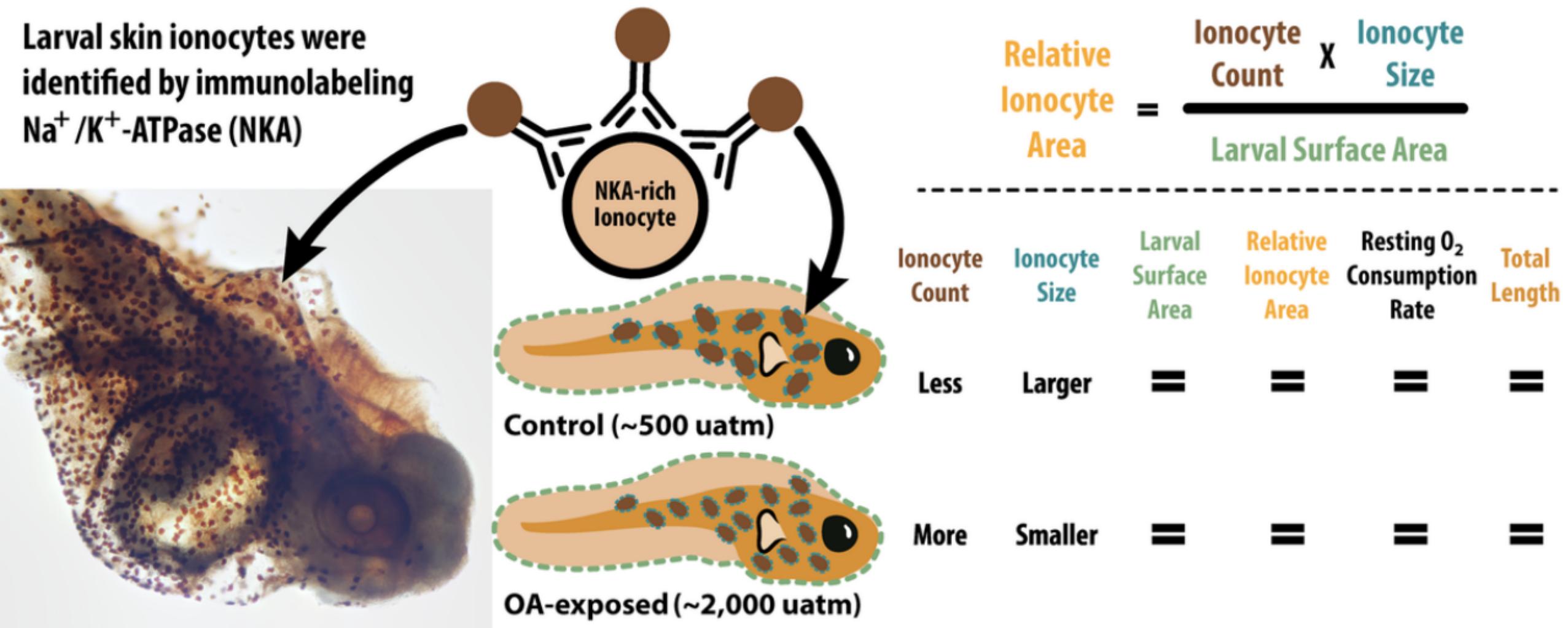
599 **Figure 1. Total length of experimental larval white seabass.** Control (black) and OA-
 600 exposed (red) larvae's (A) total length at 5 days post-fertilization ($t(10) = 0.4717$; $p = 0.6473$),
 601 and (B) over the 2 to 5 days post-fertilization ($F(1,20) = 0.6512$; $p = 0.4292$) were not
 602 significantly different. Data are presented as means \pm S.E.M.


603

604 **Figure 2. Physiological responses of white seabass larvae exposed to control or OA**
 605 **conditions.** The (A) number of ionocytes ($t(16) = 2.223; p = 0.0410$), (B) ionocyte density ($t(16) = 4.106; p = 0.0008$), (C) ionocyte size ($t(16) = 1.843; p = 0.0840$), (D) relative ionocyte area ($t(16) = 0.5161; p = 0.6129$), and (E) relative Na^+/K^+ -ATPase abundance ($t(14) = 1.297; p = 0.2156$) of 5 days post-fertilization larvae exposed to control (black) or OA (red) conditions. (F) The relative ionocyte area of larval white seabass over 2 to 5 days post-fertilization ($(1,20) = 0.1689; p = 0.6855$). Asterisks indicate significance at an alpha level of 0.05. Data are presented as means \pm S.E.M.


612

613 **Figure 3. Cutaneous ionocytes in white seabass larvae exposed to control or OA**
614 **conditions.** Representative images showing Na^+/K^+ -ATPase immunostained cutaneous
615 ionocytes in larvae. (A-D) control treatment; (E-H) OA-exposed treatment; dpf = days post-
616 fertilization.


617

618 **Figure 4. Oxygen consumption rates of white seabass larvae.** The oxygen consumption rate
 619 of white seabass larvae (in groups of 5) from EXP 1 were measured over a 50-minute period
 620 and shown as a function of time. No significant differences in oxygen consumption rate were
 621 detected between the larvae reared in control (black) and those reared in OA-exposed (red)
 622 treatment ($t(14) = 0.0918$; $p = 0.928$). Data are presented as means \pm S.E.M.

623

624 **Figure 5. Water chemistry of the white seabass broodstock tank in the 3.5 years previous**
 625 **to larval collection.** (A) pH and (B) $p\text{CO}_2$. Red arrows on the top right indicate the date of egg
 626 collections.

