How important are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast Pacific Ocean?
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

How important are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast Pacific Ocean?

Filetype[PDF-1.97 MB]



Details:

  • Journal Title:
    Progress in Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We used satellite sea surface temperature (SST) data to characterize coastal fronts and then tested the effects of the fronts and other environmental variables on the distribution of the albacore tuna (Thunnus alalunga) catches in the coastal areas (from the coast to 200 nm offshore) of the Northeast Pacific Ocean. A boosted regression tree (BRT) model was used to explain the spatial and temporal patterns in albacore tuna catch per unit effort (CPUE) (1988–2011), using frontal features (distance to the front and temperature gradient), and other environmental variables like SST, surface chlorophyll concentration (chlorophyll), and geostrophic currents as explanatory variables. Based on over two decades of high-resolution data, the modeled results confirmed previous findings that albacore CPUE distribution is strongly influenced by SST and chlorophyll at fishing locations, and the distance of fronts from the coast (DFRONT-COAST), albeit with substantial seasonal and interannual variation. Albacore CPUEs were higher near warm, low chlorophyll oceanic waters, and near SST fronts. We performed sequential leave-one-year-out cross-validations for all years and found that the relationships in the BRT models were robust for the entire study period. Spatial distributions of model-predicted albacore CPUE were similar to observations, but the model was unable to predict very high CPUEs in some areas. These results help to explain previously observed variability in albacore CPUE and will likely help improve international fisheries management in the face of environmental changes.
  • Keywords:
  • Source:
    Progress in Oceanography, 150, 62-71
  • DOI:
  • ISSN:
    0079-6611
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1