Comparative CFD Investigation on the Performance of a New Family of Super-Cavitating Hydrofoils
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Comparative CFD Investigation on the Performance of a New Family of Super-Cavitating Hydrofoils

Filetype[PDF-1.76 MB]



Details:

  • Journal Title:
    Journal of Physics: Conference Series
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    We present a CFD characterization of a new type of super-cavitating hydrofoil section designed to have optimal performance both in super-cavitating conditions and in sub-cavitating conditions (including transitional regime). The basic concepts of the new profile family are first introduced. Lift, drag and cavity shapes at different cavitation numbers are calculated for a new foil and compared with those of conventional sub-cavitating and super-cavitating profiles. Numerical calculations confirm the superior characteristics of the new hydrofoil family, which is able to attain high lift and efficiency both in sub-cavitating and super-cavitating conditions. Numerical calculations are based on a multi-phase fully turbulent URANSE solver with a bubble dynamic cavitation model to follow the generation and evaporation of the vapor phase. The new profile family, initially devised for ultra-high speed hydrofoil crafts, may result useful for diverse applications such as super-cavitating or surface-piercing propellers or high-speed sailing boats.
  • Keywords:
  • Source:
    Journal of Physics: Conference Series, 656, 012147
  • DOI:
  • ISSN:
    1742-6588;1742-6596;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1