sunRunner1D: A Tool for Exploring ICME Evolution through the Inner Heliosphere
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

sunRunner1D: A Tool for Exploring ICME Evolution through the Inner Heliosphere

Filetype[PDF-1.25 MB]



Details:

  • Journal Title:
    Universe
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Accurate forecasts of the properties of interplanetary coronal mass ejections (ICMEs) prior to their arrival at Earth are unquestionably a key goal for space weather. Currently, there are several promising techniques for accomplishing this, including the more focused but limited objective of predicting the time of arrival (ToA) of the ICME at Earth. In this study, we describe a new tool, sunRunner1D, with the initial goal of being able to reproduce the structure and evolution of four categories of CMEs as they propagate from the corona to 1 AU. We demonstrate that sunRunner1D can reproduce the essential properties of these ICMEs to varying degrees of success. We suggest that, ultimately, this tool could assist operational forecasters in predicting space weather events, and their associated geomagnetic consequences. In the nearer term, we anticipate that it could potentially provide useful forecasts for ToA.
  • Keywords:
  • Source:
    Universe, 8(9), 447
  • DOI:
  • ISSN:
    2218-1997
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2