Compact midwave imaging system (CMIS) for retrieval of cloud motion vectors (CMVs) and cloud geometric heights (CGHs)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Compact midwave imaging system (CMIS) for retrieval of cloud motion vectors (CMVs) and cloud geometric heights (CGHs)

Filetype[PDF-836.28 KB]



Details:

  • Journal Title:
    Remote Sensing of the Atmosphere, Clouds, and Precipitation VII
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is developing a compact, light-weight, and lowpower midwave-infrared (MWIR) imager called the Compact Midwave Imaging Sensor (CMIS), under the support of the NASA Earth Science Technology Office Instrument Incubator Program. The goal of this CMIS instrument development and demonstration project is to increase the technical readiness of CMIS, a multi-spectral sensor capable of retrieving 3D winds and cloud heights 24/7, for a space mission. The CMIS instrument employs an advanced MWIR detector that requires less cooling than traditional technologies and thus permits a compact, low-power design, which enables accommodation on small spacecraft such as CubeSats. CMIS provides the critical midwave component of a multi-spectral sensor suite that includes a high-resolution Day-Night Band and a longwave infrared (LWIR) imager to provide global cloud characterization and theater weather imagery. In this presentation, an overview of the CMIS project, including the high-level sensor design, the concept of operations, and measurement capability will be presented. System performance for a variety of different scenes generated by a cloud resolving model (CRM) will also be discussed.
  • Source:
    Remote Sensing of the Atmosphere, Clouds, and Precipitation VII (2018)
  • DOI:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1