The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
On the Importance of Regime-Specific Evaluations for Numerical Weather Prediction Models as Demonstrated Using the High-Resolution Rapid Refresh (HRRR) Model
-
2024
-
-
Source: Weather and Forecasting, 39(5), 781-791
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:The scientific literature has many studies evaluating numerical weather prediction (NWP) models. However, many of those studies averaged across a myriad of different atmospheric conditions and surface forcings that can obfuscate the atmospheric conditions when NWP models perform well versus when they perform inadequately. To help isolate these different weather conditions, we used observations from the U.S. Climate Reference Network (USCRN) obtained between 1 January and 31 December 2021 to distinguish among different near-surface atmospheric conditions [i.e., different near-surface heating rates (
), incoming shortwave radiation (SWd) regimes, and 5-cm soil moisture (SM05)] to evaluate the High-Resolution Rapid Refresh (HRRR) Model, which is a 3-km model used for operational weather forecasting in the United States. On days with small (large) , we found afternoon T biases of about 2°C (−1°C) and afternoon SWd biases of up to 170 W m−2 (100 W m−2), but negligible impacts on SM05 biases. On days with small (large) SWd, we found daytime temperature biases of about 3°C (−2.5°C) and daytime SWd biases of up to 190 W m−2 (80 W m−2). Whereas different SM05 had little impact on T and SWd biases, dry (wet) conditions had positive (negative) SM05 biases. We argue that the proper evaluation of weather forecasting models requires careful consideration of different near-surface atmospheric conditions and is critical to better identify model deficiencies in order to support improvements to the parameterization schemes used therein. A similar, regime-specific verification approach may also be used to help evaluate other geophysical models. -
Source:Weather and Forecasting, 39(5), 781-791
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: