The effect of heterogeneous severe drought on all-cause and cardiovascular mortality in the Northern Rockies and Plains of the United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The effect of heterogeneous severe drought on all-cause and cardiovascular mortality in the Northern Rockies and Plains of the United States

Filetype[PDF-1.67 MB]



Details:

  • Journal Title:
    Science of The Total Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Drought is a distinct and complicated climate hazard that regularly leads to severe economic impacts. Changes in the frequency and occurrence of drought due to anthropogenic climate change can lead to new and unanticipated outcomes. To better prepare for health outcomes, more research is needed to develop methodologies to understand potential consequences. This study suggests a new methodology for assessing the impact of monthly severe drought exposure on mortality in the Northern Rockies and Plains of the United States from 2000 to 2018. A two-stage model with the power prior approach was applied to integrate heterogeneous severe drought pattern and estimate overall risk ratios of all-cause and cardiovascular mortality related to multiple drought indices (the US Drought Monitor, 6- and 12-month Standardized Precipitation-Evapotranspiration Index, 6- and 12 month Evaporative Demand Drought Index). Under severe drought, the risk ratios of all-cause mortality are 1.050 (95 % Cr: 1.031 to 1.071, USDM), 1.041 (95 % Cr: 1.022 to 1.060, 6-SPEI), 1.009 (95 % Cr: 0.989 to 1.031, 12SPEI), 1.045 (95 % Cr: 1.022 to 1.067, 6-EDDI), and 1.035 (95 % Cr: 1.009 to 1.062, 12-EDDI); cardiovascular mortality are 1.057 (95 % Cr: 1.023 to 1.091, USDM), 1.028 (95 % Cr: 0.998 to 1.059, 6-SPEI), 1.005 (95 % Cr: 0.973 to 1.040, 12-SPEI), 1.042 (95 % Cr: 1.005 to 1.080, 6-EDDI), and 1.004 (95 % Cr: 0.959 to 1.049, 12-EDDI). Our results showed that (i) a model with properly accounted for heterogeneous exposure pattern had greater risk ratios if statistically significant; (ii) a mid-term (6-month) severe drought had higher risk ratios compared to longer-term (12-month) drought; and (iii) different severe droughts affect populations in a different way. These results expand the existing knowledge of drought relationship to increasing mortality in the United States. The findings from this study highlight the need for communities and policymakers to establish effective drought-prevention initiatives in this region.
  • Source:
    Science of The Total Environment, 912, 169033
  • DOI:
  • ISSN:
    0048-9697
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1