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• This is the frst drought-related health impact study to properly ac-
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Abstract 

Drought is a distinct and complicated climate hazard that regularly leads 
to severe economic impacts. Changes in the frequency and occurrence of 
drought due to anthropogenic climate change can lead to new and unan-
ticipated outcomes. To better prepare for health outcomes, more research 
is needed to develop methodologies to understand potential consequences. 
This study suggests a new methodology for assessing the impact of monthly 
severe drought exposure on mortality in the Northern Rockies and Plains of 
the United States from 2000 to 2018. A two-stage model with the power 
prior approach was applied to integrate heterogeneous severe drought pat-
tern and estimate overall risk ratios of all-cause and cardiovascular mortal-
ity related to multiple drought indices (the US Drought Monitor, 6- and 
12-month Standardized Precipitation-Evapotranspiration Index, 6- and 12-
month Evaporative Demand Drought Index). Under severe drought, the risk 
ratios of all-cause mortality are 1.059 (95% Cr: 1.036 to 1.084, USDM), 
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1.075 (95% Cr: 1.048 to 1.102, 6-SPEI), 1.041 (95% Cr: 1.006 to 1.076, 12-
SPEI), 1.073 (95% Cr: 1.043 to 1.103, 6-EDDI), and 1.042 (95% Cr: 1.012 to 
1.074, 12-EDDI); cardiovascular mortality are 1.075 (95% Cr: 1.030 to 1.124, 
USDM), 1.067 (95% Cr: 1.019 to 1.119, 6-SPEI), 1.067 (95% Cr: 1.003 to 
1.131, 12-SPEI), 1.079 (95% Cr: 1.025 to 1.135, 6-EDDI), and 1.009 (95% Cr: 
0.959 to 1.062, 12-EDDI). Our results showed that (i) a model with properly 
accounted for heterogeneous exposure pattern had greater risk ratios; and 
(ii) a mid-term (6-month) severe drought had higher risk ratios compared to 
longer-term (12-month) drought. These results expand the existing knowl-
edge of drought relationship to increasing mortality in the United States. The 
fndings from this study highlight the need for communities and policymakers 
to establish efective drought-prevention initiatives in this region. 

Keywords: All-cause mortality, cardiovascular mortality, climate change, 
drought, risk ratio, power prior, public health 

1. Introduction 

Drought is one of the costliest climate-related disasters in the United 
States (Bell et al., 2018). The threat of drought is increasing due to anthro-
pogenic climate change (Hoegh-Guldeberg et al., 2018). Due to changes in 
the physical environment associated with droughts, there are a range of sec-
tors that are afected, including human health, human communities, natural 
resources, and ecosystems (Bell et al., 2018, 2016; Field et al., 2014). Despite 
considerable public health concerns, the assessment of health risks associated 
with drought exposure is frequently disregarded in the United States, partic-
ularly in regional-based assessments (Fard et al., 2022). One potential expla-
nation of the lack of research is the complexity of linking drought to health 
outcomes. Drought lacks the direct pathway to health outcomes like many 
other climate-related events. In addition, multiple drought indices showed a 
distinct pattern in capturing drought episodes in the same geographical loca-
tion (Gwon et al., 2023). To address these issues, more research is needed on 
region-based or region-specifc disparities to understand how and why they 
difer. 

A substantial number of epidemiological studies have been conducted in 
the previous decade to investigate the potential link between drought expo-
sure and mortality. The majority of studies in the United States found that 
severe drought, rural communities, and elderly populations over 65 years 
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old were at a higher risk of all-cause, cardiovascular, or respiratory mor-
tality (Berman et al., 2017, 2021; Lynch et al., 2020; Abadi et al., 2022; 
Gwon et al., 2023). In particular, the areas that experience drought less 
frequently were more sensitive and had higher mortality risks compared to 
areas that chronically experience drought conditions (Berman et al., 2017; 
Gwon et al., 2023). Several studies in Spain, Portugal, and Brazil had sim-
ilar assessment and showed that longer-term drought and extended drought 
periods increased daily mortality risk for the elderly individuals (Salvador 
et al., 2019, 2020b, 2021, 2022). Other studies suggested that short-term 
drought with high temperature and air pollution had negatively impact on 
the selected cause of mortality (Salvador et al., 2020a,c). In the Northern-
most region of Bangladesh, short-term extreme drought increased the risk of 
natural cause, cardiovascular, respiratory disease (Alam et al., 2021, 2022). 
All these results provided extensive analysis and signifcant fndings using 
standard time-series modeling approach that is common in environmental 
epidemiology. 

One of the most difcult aspects of modeling time-series data is integrat-
ing trends of heterogeneous exposure over the study period. We frequently 
observe in climate- or weather-related health risk assessments that such ex-
posure shows a rapid spike or slab at a certain time-point or time-window 
due to unanticipated circumstances. The 2012 drought in the United States 
caused around $30 billion in damage (Smith and Katz, 2013) and was one 
of the most severe and damaging droughts in recent history since the Dust 
Bowl of the 1930s (Basara et al., 2013). Although the drought of 2012 spread 
across most of the United States, it mainly afected the Midwest and Great 
Plains regions (Peterson et al., 2013; Hoerling et al., 2013; Bell et al., 2018). 
The impact on health outcomes would be biased if this heterogeneous ex-
posure trend was not appropriately accounted for, or the magnitude of the 
efect would be underestimated or disguised. This has provided a scientifc 
motivation for the development of an adequate statistical model in assessing 
health risks associated with climate- or weather-related exposure. 

The power prior discussed by Ibrahim and Chen (2000) has emerged as a 
useful class of informative priors in Bayesian inference when historical data 
are available. This approach is a potential statistical solution to integrate 
heterogeneous datasets. The main idea is to determine how much of the past 
data will be used in the present data. It has broad applications in a variety of 
felds, including health care, clinical trials, economics, and business (Ibrahim 
et al., 2015). In a water quality evaluation, water segment impairment tests 
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using the power prior had greater power than the raw score approach used 
by the Environmental Protection Agency (EPA) to determine the percent-
age of samples in violation of the water quality standard (Duan et al., 2006). 
In toxicology, power prior approach was superior to fnd dose-response rela-
tionship and also successfully achieved the reduction of the uncertainty in 
benchmark dose estimation (BMD) (Shao, 2012, 2011). Moreover, Chen and 
Ibrahim (2004) applied the power prior to predict daily-level ragweed pollen 
in Kalamazoo, Michigan, from 1991 to 1994. Within the daily-level corre-
lated time-series data, they considered the data 1991 to 1992 as historical 
data, the data 1993 as the current data, and the data 1994 as validation data 
to predict pollen level. 

In this article, we propose a new methodology to estimate the overall 
risk ratios of all-cause and cardiovascular mortalities associated with the 
drought exposure. We are particularly interested in investigating the impact 
of severe drought on health outcomes because there is a distinct trend of 
severe drought prior to and after 2012 (See Figure 2 in Section 4.2). To 
the best of our knowledge, this is the frst drought-related health study to 
properly incorporate heterogeneous exposure pattern. The outcomes of the 
current study support the hypothesis that severe drought increases mortality 
risk ratios in the general population of the Northern Rockies and Plains. 
Our fndings will contribute to a better understanding of the impacts of 
heterogeneous exposure in the assessment of health risks. 

2. Materials 

2.1. Study Area: Northern Rockies and Plains 

The Northern Rockies and Plains region of the United States encom-
passes fve states: Montana, Wyoming, North Dakota, South Dakota, and 
Nebraska. The region is characterized by the Rocky Mountains in the west 
and experiences a diverse range of climate due to geographical distinction. 
Furthermore, a majority of the territory is known for large-scale agriculture 
and cattle ranching, which are the region’s principal sources of income. Ru-
ral communities make up 88.3% of the counties (Ingram and Franco, 2013) 
and the Great Plains where is the eastern part of the region and were the 
most afected by the severe drought of 2012 (Peterson et al., 2013; Hoerling 
et al., 2013). Furthermore, the climate scenarios are projecting an increase 
in frequency and severity of drought in this region (Zambreski et al., 2018). 
This information qualifes the region as an excellent study location. 
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2.2. Health Data 
We extracted mortality data from the National Center for Health Statis-

tics (NCHS) from January 2000 to December 2018. Using the data, we gen-
erated monthly county-level death counts for cardiovascular disease (ICD-10 
codes I00-I99) and for all-cause mortality in the Northern Rockies and Plains 
of the United States. The datasets were stratifed these counts by monthly 
aggregations into four age groups (0-19, 20-39, 40-64, and over 65 years), 
three race groups (White, Black, and other than white and black), and sex 
(male and female). The annual county-level population by demographic vari-
ables (age, gender, and sex) were obtained from the surveillance, epidemiol-
ogy, and end results (SEER) program (National Cancer Institute, 2021) and 
these estimates were used in all the months in each calendar year. The fnal 
datasets was aggregated by the demographic variables to compute monthly 
county-level death counts of cardiovascular and all-cause mortalities for the 
total population. 

2.3. Climate Data 
2.3.1. The United States Drought Monitor (USDM) 

The USDM is a collaborative efort between the National Oceanic Atmo-
spheric Administration (NOAA), the U.S. Department of Agriculture (USDA), 
and the National Drought Mitigation Center (NDMC) that has been pro-
viding weekly updates of drought conditions since 2000 (Svoboda et al., 
2002). Using a convergence of evidence approach, drought authors blend 
moisture defcits from across the hydrological cycle (i.e., precipitation, soil 
moisture, evaporation, etc) with drought reports from local experts to cate-
gorize drought conditions into one of six categories: wet to normal conditions 
(None), abnormally dry (D0), moderate (D1), severe (D2), extreme (D3), and 
exceptional (D4). We then reclassifed USDM measures into monthly binary 
and three-level categories for this assessment. A binary measure was esti-
mated based on the frequencies of the drought status within a given month 
and county. ‘No drought’ was defned if the frequencies of no drought and 
D0 condition in the week within a given month and county has more than 
the frequencies for all D1 to D4 conditions. Otherwise, it is labeled as a 
drought condition. The three-level categorical status is determined as (i) no 
drought in the binary measure; (ii) moderate drought (with binary drought 
condition and the sum of frequencies of D1 and D2 are greater than that of 
D3 and D4); and (iii) severe drought (with binary condition and the sum of 
frequencies of D3 and D4 are greater than that of D1 and D2). 
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2.3.2. The Standardized Precipitation-Evapotranspiration Index (SPEI) 
The SPEI has been well-accepted in drought research including studies on 

health impacts globally (Lynch et al., 2020; Salvador et al., 2019, 2020b, 2021, 
2022). The SPEI has a various time scale (weekly to monthly) and is calcu-
lated using precipitation and temperature measurements, as well as the bal-
ance of precipitation and evapotranspiration (Vicente-Serrano et al., 2010). 
The index is a standardized continuous value with positive values indicat-
ing wet conditions and negative values indicating dry conditions (drought). 
We use the SPEI at 6-month and 12-month accumulation in this study as a 
proxy for medium- and long-term drought. The resulting 6- and 12-month 
SPEI value represents the degree of wetness or dryness of the past 6- and 
12-month relative to the historical reference period. Although SPEI is a con-
tinuous value, it can be categorized mirrored to the same classes of USDM 
that support equivalent comparison between USDM and SPEI drought con-
ditions (Svoboda et al., 2002). 

2.3.3. Evaporative Demand Drought Index (EDDI) 
The EDDI measures drought signals by assessing how atmospheric evap-

orative demand (E0) responds to surface drying anomalies (Hobbins et al., 
2016; McEvoy et al., 2016). This index provides near-real-time information 
for the entire U.S. and is available in various timescales from weekly through 
monthly. Short-term EDDI, for example, indicates the atmospheric condi-
tions that can lead to fash droughts, while longer-term EDDI may indicate 
the development of more sustained drought conditions. Similar to the SPEI, 
EDDI is a continuous value and can be categorized with the same categories 
in USDM that are determined based on the distribution of aggregated evap-
orative demand values (Hobbins et al., 2016; McEvoy et al., 2016). This sup-
ports equivalent comparison between USDM and EDDI drought estimates. 

2.3.4. Temperature Anomaly 
A monthly mean temperature was included from the NOAA’s Nclimgrid 

product at a 5km grid cell resolution (Vose et al., 2022). We then calcu-
lated a monthly county level temperature anomaly as the diference between 
the mean monthly temperature and the 30-year mean monthly temperature 
from 1991-2020 using zonal averages of all grid cells falling within a county 
boundary. 
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3. Statistical Modeling 

3.1. Power Prior 

The Power power prior is a useful class of informative prior to integrate 
a certain level of historical data DH to the current data DC in Bayesian in-
ference (Ibrahim and Chen, 2000; Ibrahim et al., 2015). The elicitation of 
the power prior is based on the historical data and a discounting parameter 
a0 that quantifes the similarity (or heterogeneity) between current data and 
historical data. A large value of a0 represents high degree of similarity be-
tween two datasets, while small value indicates the opposite. The parameter 
a0 also controls the infuence of the historical data on the current data and is 
restricted to be between 0 and 1, 0 ≤ a0 ≤ 1. No historical data is incorpo-
rated if a0 = 0, while full historical data is accommodated when a0 = 1. The 
value of a0 is often chosen based on a statistical criterion for computational 
simplicity (Ibrahim et al., 2015). We treat it as a random quantity, however, 
by specifying its proper prior distribution. This allows the data to determine 
the value of a0. 

3.2. Two-stage Model 

We used a two-stage model to estimate county-level and overall risk ratio 
of all-cause mortality associated with drought exposure. First, we divided 
the dataset into two sub-datasets: prior to and after 2012. The sub-data 
before 2012 was considered as the historical data and the data after 2012 
was used as the current data. This threshold was determined based on the 
mean percentage of the severe drought episodes in Figure 2. 

In the frst stage, a separate quasi-Poisson regression model was used to 
estimate location-specifc risk ratios in historical data and current data. We 
included cubic B-spline of month with 7 degrees of freedom to control long-
term time trend, second degree polynomial of anomaly temperature, and 
indicator variables to control calendar year efect. The drought exposure, 
moderate and severe drought, were used as categorical variables (No drought 
as a reference level). The values of logarithm for population size in each 
county were used an ofset variable in the model. 

In the second stage, we applied Bayesian meta regression to estimate the 
overall risk ratio. Specifcally, we combined county-specifc risk ratio by a 
random efect Bayesian linear regression model with power prior approach 
to evaluate the overall risk ratio. We performed the entire analysis using 
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Figure 1: Flow of the diagram of the proposed statistical modeling. Note that L(θ|DH ) 
and L(θ|DC ) are likelihood functions of the second stage model, respectively. Moreover, 
θ is the risk ratio at logarithm scale. 

two-stage model with power prior approach. We note that the model formu-
lation in the frst stage leads to the county-specifc estimates that are being 
interpreted as the county-level risk ratio at logarithm scale. Therefore, we 
considered the impacts at an exponential to compute the overall risk ratio in 
the second stage. Weakly non-informative priors were used on the regression 
coefcient θ ∼ N(0, 100) and discounting parameter a0 ∼ Beta(1, 1). We 
considered the impacts at an exponential to compute the overall risk ratio 
due to the model formulation and its interpretation of the risk ratio at the 
log-scale. Figure 1 displays the fow of diagram of our proposed statistical 
modeling. Note that details on the power prior and its formulation can be 
found in Section S1 of the Supplementary Materials. 

In all Bayesian computations, we used 50,000 Markov Chain Monte Carlo 
(MCMC) samples after a burn-in of 10,000 iterations to compute the pos-
terior summaries, including posterior means, posterior standard deviations, 
and 95% Credible Intervals (Cr). The convergence of the Gibbs sampler was 
examined by trace plots and auto-correlation plots. Statistical signifcance is 
determined if the 95% Cr of the estimated risk ratios do not include the value 
of one. The R statistical software (version 4.2.2) was used to generate all fg-
ures. For all statistical analyses, Statistical Analysis Software (SAS version 
14.2) with PROC GLIMMIX and PROC MCMC procedures was used. 

8 



4. Results 

4.1. Descriptive Statistics 

Table 1 provides summary statistics for all-cause and cardiovascular death 
outcomes in the Northern Rockies and Plains during the 2000-2018. The total 
number of all-cause and cardiovascular deaths were 813,121 and 256,029, 
respectively. As observed in all population in the region, the variability of 
the death counts exceeds the mean death counts (366.222 > 3566.32 and 
115.362 > 1122.93 for all-cause and cardiovascular, respectively), indicating 
that there is overdispersion in the mortality data. This demonstrates that 
the overdispersed quasi-Poisson distribution is a good ft for the distribution 
of death counts. Nebraska had the highest observed mean mortality rates 
(1313.60 and 413.79 in all-cause and cardiovascular mortality, respectively), 
accounting for nearly 37% of all deaths. Wyoming has the lowest percentage 
of both mortality occurrences in the region, less than 10%. In the order and 
magnitude, fve states in the region showed the same death rate trends (See 
Table 1). 

Table 1: Baseline characteristics of study populations by state during study period (2000-
2018). N is the number of cause-specifc deaths, n is the number counties in the state, 
and SD indicates standard deviation. 

Region County All-cause Cardiovascular 
n N Mean SD N Mean SD 

Total 291 813,121 3566.32 366.22 256,029 1122.93 115.36 
Montana 56 170,495 (20.97%) 749.79 24.63 50,657 (19.79%) 228.13 7.30 
Wyoming 23 78,256 (9.62%) 343.23 16.71 23,221 (9.07%) 101.85 4.86 

North Dakota 53 123,809 (15.23%) 543.02 21.42 41,047 (16.03%) 180.03 6.69 
South Dakota 66 141,060 (17.35%) 618.68 22.17 46,759 (18.26%) 205.08 6.64 

Nebraska 93 299,501 (36.83%) 1313.60 44.95 94,345 (36.86%) 413.79 12.98 

Table 2 summarizes the monthly frequency of total drought exposure in 
the Northern Rockies and Plains. The frequency was accumulated if the 
counties were experienced binary, moderate, or severe drought during the 
study period. Overall, the USDM captured more drought events (approxi-
mately 34.3%) than the SPEI (25.8% for 6-month and 28.7% for 12-month) 
and EDDI (26.8% for 6-month and 28.7% for 12-month). 

Figure 2 displays the average percentage of the drought having binary, 
moderate, and severe drought events with varying drought exposures during 
the study period. The average percentage was calculated using the total 
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Table 2: Baseline characteristics for the county-months frequency of diferent drought 
exposure levels by diferent drought indices during study period (2000-2018). Abbrevi-
ations indicate the drought indices (USDM=U.S. Drought Monitor, SPEI=Standardized 
Precipitation-Evapotranspiration Index, EDDI=Evaporative Drought Demand Index) and 
the monthly frequencies of drought. 

Drought USDM 6-SPEI 12-SPEI 6-EDDI 12-EDDI 
None 43,575 (65.7%) 49,253 (74.2%) 47,328 (71.3%) 48,578 (73.2%) 47,271 (71.3%) 

Moderate 16,597 (25.0%) 13.391 (20.2%) 14,382 (21.7%) 13,224 (19.9%) 14.407 (21.7%) 
Severe 6176 (9.3%) 3704 (5.6%) 4638 (7.0%) 4546 (6.9%) 4670 (7.0%) 

number of drought episodes in the counties with binary, moderate, and severe 
drought over the full study period. Year after year, quite diferent temporal 
patterns of binary and moderate drought were observed. Except for the year 
2012, the severe drought followed a similar pattern. In 2012, the 6-month 
and 12-month EDDI showed that the majority of the drought was severe 
(78.8% for 6-month and 72.2% for 12-month), whereas the 6-month and 12-
month SPEI captured both moderate and severe drought in a similar way 
(See Figure 2). This pattern clearly showed that the health risk associated 
with the severe drought exposure will difer prior to and after 2012. If varied 
temporal patterns are not appropriately addressed, the efect of drought on 
health outcomes may be masked or underestimated. To estimate the overall 
risk ratio of all-cause and cardiovascular mortality, we need to consider either 
two separate analyses prior to and after 2012 or develop a new statistical 
model. 

4.2. Association between severe drought exposure and mortalities 

While our proposed methodology is equally applicable to the binary 
drought classifcation and the moderate drought category, we are mainly 
reporting results based on severe drought in this article. We performed four 
diferent analyses based on usual two-stage model (M1), two-stage model with 
separate analyses prior to (M2) and after 2012 (M3), and two-stage model 
with power prior approach (M4) to evaluate the overall risk ratio of all-cause 
and cardiovascular mortality associated with diferent drought exposures. 

We included counties in the second stage modeling ftting if the estimate 
of drought exposure was between −1.5 and 1.0 and the standard error was 
less than 1.0 on a logarithmic scale (Gwon et al., 2023). This suggests to 
an estimated location-specifc risk ratio of 0.22 to 2.72, which is acceptable 
in practice. Because the majority of counties were rural, almost 10% were 
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Figure 2: The percentage of months exposed to drought events (binary, moderate, and 
severe) using two drought indicators with diferent timescales by the Northern Rockies and 
Plains of the United States from 2000 to 2018. Abbreviations indicate drought events (B: 
binary, M: moderate, S: severe) and drought indices (SPEI=Standardized Precipitation-
Evapotranspiration Index, EDDI=Evaporative Drought Demand Index, USDM=United 
States Drought Monitor). 
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included in the analysis if typical population size was used as an inclusion 
criterion to limit model convergence (just 37 out of 291 counties if more than 
5,000 was included). However, our approach assured that more than 75% of 
counties were included in the second stage, resulting in increased statistical 
power across all regions. 

Figure 3 shows the posterior estimates and their corresponding 95% Crs 
of the estimated overall risk ratios by four diferent analyses (M1 to M4). 
Results from the second stage model show that the overall risk ratios difered 
in direction and magnitude by diferent methods. In the usual two-stage 
model (M1), there were positive associations between all-cause mortality and 
diferent severe drought exposures. The region had statistically signifcant 
all-cause mortality risk ratios of 1.050 (95% Cr: 1.034 to 1.068), 1.033 (95% 
Cr: 1.016 to 1.050), 1.023 (95% Cr: 1.009 to 1.038), 1.035 (95% Cr: 1.017 
to 1.055), and 1.040 (95% Cr: 1.022 to 1.058) by USDM, 6-month SPEI, 12-
month SPEI, 6-month EDDI, and 12-month EDDI, respectively. The result 
showed that the USDM increased the risk ratio by 5.0% and other drought 
exposures were interpreted similarly. However, only the USDM and 6-month 
EDDI had statistically signifcant cardiovascular mortality risk ratios of 1.051 
(95% Cr: 1.022 to 1.079) and 1.037 (95% Cr: 1.007 to 1.069). This indicates 
that the USDM and 6-month EDDI increased the risk ratio by 5.1% and 
3.7%, respectively. Note that all posterior estimates and the value of a0 

under M1 to M4 are presented in Tables S1 and S2 of the Supplementary 
Materials. 

The results by separate analyses prior to (M2) and after 2012 (M3) showed 
quite diferent conclusion in Figure 3. In both time frame, only the USDM 
had statistically signifcant the risk ratios of all-cause mortality by 1.046 
(95% Cr: 1.021 to 1.071) and 1.057 (95% Cr: 1.022 to 1.093). The remaining 
drought exposures increased the risk ratios after 2012, with all magnitudes 
greater than the standard two-stage model (M1). Moreover, the 12-month 
SPEI and 6-month EDDI prior 2012 (M2) showed protective or null efects 
with the risk ratios of 0.977 (95% Cr: 0.951 to 1.003) and 0.997 (95% Cr: 
0.968 to 1.027). Prior to 2012 (M2), none of the drought exposures had 
statistically signifcant risk ratios for cardiovascular mortality. Moreover, 
drought exposures except USDM reduced the risk ratios. However, there were 
statistically signifcant positive associations between cardiovascular mortality 
and drought exposures (except for the 12-month EDDI) after 2012 (M3). The 
region had increased risk ratio of 1.076 (USDM, 95% Cr: 1.030 to 1.138), 
1.074 (6-month SPEI, 95% Cr: 1.019 to 1.126), 1.081 (12-month SPEI, 95% 
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Figure 3: Posterior estimates and its 95% Credible Intervals for the risk ratio associated 
with diferent drought exposures by two-stage, separate period, and power prior approach 
for all-cause (left) and cardiovascular mortality (right). Abbreviations indicate posterior 
estimate of the overall risk ratio (RR: Risk ratio) and analysis method (M1: standard 
two-stage model, M2: two-stage model prior to 2012, M3: two-stage model after 2012, 
M4: two-stage model with the power prior). 

Cr: 1.003 to 1.144), and 1.088 (6-month EDDI, 95% Cr: 1.025 to 1.145). The 
risk ratios previous to 2012 (M2) and after 2012 (M3) had somewhat diferent 
magnitudes and directions, as shown in Figure 3, providing a reasonable 
scientifc motivation to propose the power prior approach. 

The power prior approach (M4) showed increased statistically signifcant 
risk ratios of all-cause mortality associated with all drought exposures. The 
6-month SPEI increased the greatest all-cause mortality risk of 1.075 (95% 
Cr: 1.048 to 1.102) and followed by 1.073 (6-month EDDI, 95% Cr: 1.043 to 
1.103), 1.059 (USDM, 95% Cr: 1.036 to 1.084), 1.042 (12-month EDDI, 95% 
Cr: 1.012 to 1.074), and 1.041 (12-month SPEI, 95% Cr: 1.006 to 1.076). 
Four drought exposures were identifed statistically signifcant adverse efects 
in cardiovascular mortality. The risk ratios were 1.075 (95% Cr: 1.030 to 
1.124), 1.067 (95% Cr: 1.019 to 1.119), 1.067 (95% Cr: 1.003 to 1.131), and 
1.079 (95% Cr: 1.025 to 1.135) by the USDM, 6-month and 12-month SPEI, 
and 6-month EDDI in order. Statistically signifcant overall risk ratios from 
the power prior approach (M4) were greater than the risk ratios by standard 
time-series model (M1). 
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5. Discussion 

We have examined the overall risk ratios of all-cause and cardiovascular 
mortalities associated with diferent severe drought exposures based on mul-
tiple drought indices in the Northern Rockies and Plains of the United States 
between 2000 and 2018. The study has a signifcant contribution by propos-
ing a new statistical model to integrate heterogeneous time-series data using 
the two-stage model with the power prior. The proposed approach was mo-
tivated by heterogeneous severe drought episodes during study period. Our 
approach is the frst to adequately account for the heterogeneous exposure in 
health risk assessment and also provides public health implications for risk 
management associated with drought exposure. 

Our main fnding is that severe drought exposure has a negative impact 
on all-cause and cardiovascular mortality in the general population. Re-
sults show that all-cause mortality risk ratios were increased by all drought 
exposures and cardiovascular mortality risk ratio had the same trend, ex-
cept for the 12-month EDDI (Figure 3). As soils dry out during a drought 
period, dust and other particles are more likely to circulate in the air, afect-
ing cardiovascular and respiratory diseases (Alpino et al., 2016; Bell et al., 
2018; Bellizzi et al., 2020). A geographical feature is of another potential ex-
planation. According to the NCHS 2013 binary rural/urban categorization 
(Ingram and Franco, 2013), approximately 88.3% of the counties (257 out of 
291 counties) in the Northern Rockies and Plains are rural. As agriculture 
and animal husbandry are the primary sources of income in this region, resi-
dents have a greater exposure to outside activity and are expected to be more 
vulnerable to extreme climate events, such as drought. Another explanation 
is a high population of the elderly individuals in the area. Pre-existing health 
concerns, a higher baseline death rate, comorbidities, or poor access medical 
service are all common among the elderly. 

When compared to previous methods, the suggested two-stage model with 
the power prior approach showed higher risk ratios of all-cause and cardio-
vascular mortalities (Figure 3). It is of interest in time-series analysis to 
evaluate the efect of exposure on the outcome across time. The magnitudes 
and directions of our two separate studies prior to (M2) and after 2012 (M3) 
varied for overall risk ratios of all-cause and cardiovascular mortalities. As a 
result, the overall risk ratios in the standard two-stage model (M1) may be 
underestimated or downgraded. The 6-month and 12-month SPEIs did not 
have statistically signifcant overall risk ratios of cardiovascular mortality due 
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to this attenuation. However, in the same situation, the proposed two-stage 
model (M4) showed higher risk ratios (Figure 3). This fnding demonstrates 
that a statistical model that accommodates distinct time-series patterns cap-
tures more stronger associations. 

To determine a data-driven similarity between the prior to and after 2012, 
the discounting parameter a0 was generated and summarized by Bayesian 
power prior (M4) in the second stage. The quantity is also interpreted as the 
amount of information borrowed from the data DH to estimate the overall 
risk ratios (See in Figure 1). Based on our fndings, the level of borrowing 
strength or similarity was controlled in our study from 15% to 71%. The 
value a0 can be directly calculated using criterion-based method, but several 
sensitivity analyses should be carried out in the range of the guide values 
(Ibrahim et al., 2015). 

Results from our study showed that the 6-month time-scale drought had 
higher risk ratios of all-cause and cardiovascular mortality compared to the 
12-month drought. This fnding is somewhat diferent from our expectation. 
We understand that longer-term drought is frequently required to establish 
prolonged drought and also provides a more complete picture of drought con-
dition. Previous work showed that longer-term (12-month) drought events 
had more detrimental impacts than the mid-term (6-month) drought (Sal-
vador et al., 2019, 2020b; Lynch et al., 2020; Abadi et al., 2022). How-
ever, a recent study found that short-term (3-month) SPEI was associated 
with cardiovascular mortality in two meteorological stations of the northern 
Bangladesh (Alam et al., 2022). A short-term (1-month) drought increased 
the relative risk in circulatory and respiratory mortality in Spain (Salvador 
et al., 2020c). The combined efect of heatwaves and pollution during drought 
periods could explain the short-term or mid-term impact of droughts on mor-
tality (Salvador et al., 2020c). 

Although this study reported important results, there are also several 
limitations. First, we considered severe drought exposures based on difer-
ent drought indices with two timescales in our analysis. We did not pro-
vide guidelines or recommendations for drought indicator selection because 
the number of location-specifc risk ratios in the frst stage model varied 
by drought indicator. Further research is needed for recommendation of 
indicator selection in health risk assessment. Second, we only focused on 
severe drought events because they had a clear heterogeneous pattern before 
and after 2012. There were several wave patterns when moderate episodes 
of drought were evaluated (Figure 2). This is easily applied to the proposed 
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power prior approach with various discounting parameters a0 (Ibrahim et al., 
2015), but additional computing complexity is necessary. Third, throughout 
the summer, heatwaves occur along with drought, exacerbating the concen-
trations of air pollution. This may have a higher impact on the mortality 
risk ratio; but, due to our existing monthly mortality and climatic data, we 
were unable to evaluate this. 

6. Conclusion 

Climate change can cause environmental exposures to behave in a difer-
ent pattern, making health risk assessment associated with these exposures 
more complex. Our study showed that severe drought had a detrimental 
impact on all-cause and cardiovascular mortalities in the Northern Rockies 
and Plains region. Although the primary goal was to develop a novel statisti-
cal methodology to assess the impact of the heterogeneous drought exposure 
pattern on mortality, our fndings could be valuable for public health prac-
titioners in delivering early warnings and targeted messaging to populations 
at risk. We believe that there is a growing need for future research to exten-
sively investigate and understand the health impacts of drought, particularly 
focusing on demographics such as age group, gender, and race. 
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