Climate Change Effects on Rainfall Intensity–Duration–Frequency (IDF) Curves for the Lake Erie Coast Using Various Climate Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Climate Change Effects on Rainfall Intensity–Duration–Frequency (IDF) Curves for the Lake Erie Coast Using Various Climate Models

Filetype[PDF-3.13 MB]



Details:

  • Journal Title:
    Water
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    This study delved into the analysis of hourly observed as well as future precipitation data in the towns of Willoughby and Buffalo on the Lake Erie Coast to examine the variations in IDF relationships over the 21st century. Several regional climate models (RCMs) and general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 were used. The study evaluated three RCMs with historical and Representative Concentration Pathway (RCP) 8.5 scenarios for each CMIP5 and three GCMs with historical and Shared Socioeconomic Pathways (SSPs) (126, 245, 370, and 585) scenarios for each CMIP6. The results suggested that the town of Willoughby would experience an increase of 9–46%, whereas Buffalo would experience an upsurge of 6–140% in the hourly precipitation intensity under the worst-case scenarios of RCP8.5 for CMIP5 and SSP585 for CMIP6. This increase is expected to occur in both the near (2020–2059) and far future (2060–2099), with a return period as low as 2 years and as high as 100 years when compared to the baseline period (1980–2019). The analysis indicated an increased range of 9–39% in the near future and 20–55% in the far future for Willoughby, while the Buffalo region may experience an increase of 2–95% in the near future and 3–192% in the far future as compared to the baseline period. In contrast to CMIP6 SSP585 models, CMIP5 RCP8.5 models predicted rainfall with an intensity value that is up to 28% higher in the town of Willoughby, while the reverse was true for the Buffalo region. The findings of this study are expected to be helpful for the design of water resource infrastructures.
  • Source:
    Water, 15(23), 4063
  • DOI:
  • ISSN:
    2073-4441
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1