U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Seasonal and tidal variations in hydrologic inputs drive salt marsh porewater nitrate dynamics



Details

  • Journal Title:
    Hydrological Processes
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Salt marshes remove terrestrially derived nutrients en route to coasts. While these systems play a critical role in improving water quality, we still have a limited understanding of the spatiotemporal variability of biogeochemically reactive solutes and processes within salt marshes. We implemented a high‐frequency sampling system to monitor sub‐hourly nitrate () concentrations in salt marsh porewater at Elkhorn Slough in central California, USA. We instrumented three marsh positions along an elevation gradient subjected to different amounts of tidal inundation, which we predicted would lead to varied biogeochemical characteristics and hydrological interactions. At each marsh position, we continuously monitored porewater concentrations at depths of 10, 30, and 50 cm and porewater levels measured at 70 cm depth over seven deployments of ~10 days each that spanned seasonal wet/dry periods common to Mediterranean climates. We quantified tidal event hysteresis between and water level to understand how concentrations and sources fluctuate across tidal cycles. In dry periods, the ‐porewater level relationship indicated that the source was likely estuarine surface water that flooded the transect during high tides and the salt marsh was a sink. In wet periods, the ‐porewater level relationship suggested the salt marsh was a source of . These findings suggest that tidal and seasonal hydrologic fluxes together control porewater dynamics and export and influence ecological processes in coastal environments.
  • Source:
    Hydrological Processes, 37(8)
  • DOI:
  • ISSN:
    0885-6087 ; 1099-1085
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:5c4ae7d6add58d8a58457086c262174fd80688d94a3bb4cc80d3ebc6e9e985dad3d849c1200522c746fa40085ccdb2433bc015717409d9cdc34a083f0f1809ef
  • Download URL:
  • File Type:
    Filetype[PDF - 1.60 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.