The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Estimating full longwave and shortwave radiative transfer with neural networks of varying complexity
-
2023
-
-
Source: Journal of Atmospheric and Oceanic Technology (2023)
Details:
-
Journal Title:Journal of Atmospheric and Oceanic Technology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative-transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only – excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the northern hemisphere. In this work we emulate the full shortwave and longwave RRTM – with all predictor variables, driven by GFSv16 forecasts on the native pressure-sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail – as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/-0.002 K day−1 for heating rate and 6.3/4.3/-0.1 W m−2 for net flux. Analogous numbers for the longwave NN are 0.22/0.12/-0.0006 K day−1 and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16.
-
Keywords:
-
Source:Journal of Atmospheric and Oceanic Technology (2023)
-
DOI:
-
ISSN:0739-0572;1520-0426;
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: