A Comparison of Beamforming and Direction Finding Algorithms (Beamscan and MUSIC) on a Linear Array HF Radar in a Medium to Low Wave Energy Environment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Comparison of Beamforming and Direction Finding Algorithms (Beamscan and MUSIC) on a Linear Array HF Radar in a Medium to Low Wave Energy Environment

Filetype[PDF-5.56 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • NOAA Program & Office:
  • Description:
    We assess the performance of three different algorithms for estimating surface ocean currents from two linear array HF radar systems. The delay-and-sum beamforming algorithm, commonly used with beamforming systems, is compared with two direction-finding algorithms: Multiple Signal Classification (MUSIC) and direction finding using beamforming (Beamscan). A 7-month dataset from two HF radar sites (CSW and GTN) on Long Bay, South Carolina (United States), is used to compare the different methods. The comparison is carried out on three locations (midpoint along the baseline and two locations with in situ Eulerian current data available) representing different steering angles. Beamforming produces surface current data that show high correlation near the radar boresight (R2 ≥ 0.79). At partially sheltered locations far from the radar boresight directions (59° and 48° for radar sites CSW and GTN, respectively) there is no correlation for CSW (R2 = 0) and the correlation is reduced significantly for GTN (R2 = 0.29). Beamscan performs similarly near the radar boresight (R2 = 0.8 and 0.85 for CSW and GTN, respectively) but better than beamforming far from the radar boresight (R2 = 0.52 and 0.32 for CSW and GTN, respectively). MUSIC’s performance, after significant tuning, is similar near the boresight (R2 = 0.78 and 0.84 for CSW and GTN) while worse than Beamscan but better than beamforming far from the boresight (R2 = 0.42 and 0.27 for CSW and GTN, respectively). Comparisons at the midpoint (baseline comparison) show the largest performance difference between methods. Beamforming (R2 = 0.01) is the worst performer, followed by MUSIC (R2 = 0.37) while Beamscan (R2 = 0.76) performs best.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 40(2), 191-218
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26