Predicting Turbulent Vertical Velocity in the Ocean Surface Layer under Mixed Convective and Wind/Wave Forcing
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Predicting Turbulent Vertical Velocity in the Ocean Surface Layer under Mixed Convective and Wind/Wave Forcing

Filetype[PDF-1.25 MB]



Details:

  • Journal Title:
    Journal of Physical Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Turbulence in the ocean surface layer is forced by a mixture of buoyancy, wind, and wave processes that evolves over time scales from the diurnal scale of buoyancy forcing, through storm time scales, to the annual cycle. This study seeks a predictor for root-mean-square w (rmsw), a time and surface layer average of turbulent vertical velocity w measured by bottom-mounted vertical-beam acoustic Doppler current profilers, in terms of concurrently measured surface forcing fields. Data used are from two coastal sites, one shallow (LEO, 15-m depth) and one deeper (R2, 26-m depth). The analysis demonstrates that it is possible to predict observed rmsw with a simple linear combination of two scale velocities, one the convective scale velocity familiar from the atmospheric literature, the other a scale velocity wS representing combined wind and wave effects. Three variants are considered for this latter scale velocity, the wind stress velocity alone and two forms using both and US, a Stokes velocity characteristic of the surface wave field. At both sites, the two-parameter fit using alone is least accurate, while fits using the other two variants are essentially indistinguishable. At both sites, the coefficient multiplying is the same, within error bounds, and within the range of previous observations. At the deeper site, the coefficient multiplying the wind/wave scale velocity wS is approximately half that at the shallow site, a difference here attributed to difference in wave character.
  • Keywords:
  • Source:
    Journal of Physical Oceanography, 53(9), 2121-2135
  • ISSN:
    0022-3670;1520-0485;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26