Forcing Space: An Alternative to Regime Diagrams for Predicting Characteristics of Turbulence in the Ocean Surface Mixing Layer
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Forcing Space: An Alternative to Regime Diagrams for Predicting Characteristics of Turbulence in the Ocean Surface Mixing Layer

Filetype[PDF-2.99 MB]



Details:

  • Journal Title:
    Journal of Physical Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Various forms of regime diagrams have become an accepted means of identifying the dominant type of forcing of turbulence in the ocean surface layer. However, all of the proposed forms share a number of issues, demonstrated here, that make them an imperfect tool for this purpose. Instead, I suggest a forcing space consisting of surface buoyancy flux (usually dominated by surface heat flux) and a growth rate defined as the inverse of a theoretical time scale for growth of Langmuir circulations in an unstratified water column. Using coastal data, it is demonstrated that, provided forcing conditions are roughly constant for several hours, location in the upper half-plane of this forcing space predicts organizational characteristics of observed turbulence that range in a systematic way between those of “pure” convection and those of full depth Langmuir circulations. In this upper half-plane, where a convective scale velocity exists and the surface Stokes drift velocity can be computed, allowing calculation of a Stokes scale velocity, a linear combination of the two scale velocities provides a consistent estimate of observed rms turbulent vertical velocity. Time dependence is nevertheless a frequent characteristic of ocean surface layer forcing, if only because of the (usually large) diurnal variation in surface heat flux. It is shown that the time scale of response of surface layer turbulence to time variable forcing depends on whether the major change is due to wind/wave or buoyancy forcing. Relevant modeling studies are suggested.
  • Keywords:
  • Source:
    Journal of Physical Oceanography, 52(3), 519-535
  • DOI:
  • ISSN:
    0022-3670;1520-0485;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1