Effects of Wind Stress and Surface Cooling on Cross-Shore Exchange
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Effects of Wind Stress and Surface Cooling on Cross-Shore Exchange

Filetype[PDF-3.66 MB]



Details:

  • Journal Title:
    Journal of Physical Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The formation of coastal dense shelf water in winter provides the available potential energy (APE) to fuel baroclinic instability. The combined effects of baroclinic instability and wind forcing in driving cross-shelf exchange are investigated using idealized numerical simulations with varied bottom slope, wind stress, and heat loss rate. The results show that under upwelling-favorable winds, the intensity of the instability decreases as the wind stress increases. This is caused primarily by enhanced turbulence frictional dissipation. Under downwelling-favorable winds, an increase in wind stress and/or a decrease in heat loss rate tends to constrain the baroclinic instability, leading to a circulation resembling that driven purely by wind forcing. In the latter case, once a critical value of cross-shore density gradient is reached, isopycnal slumping is initiated, leading to increased vertical stratification and narrowing of the inner shelf. The change in depth of the inner-shelf outer boundary, defined as the location corresponding to the maximum cross-shore gradient of the surface Ekman transport, is proportional to an empirically derived multiparametric quantity , where a2 is a dimensional constant, B0 is a constant heat loss rate, γ = 0.43, f is the Coriolis parameter, α is the shelf slope, B is the heat loss rate, and τ is the wind stress. This relationship is found to hold for cases when instabilities are present.
  • Keywords:
  • Source:
    Journal of Physical Oceanography, 48(11), 2627-2647
  • DOI:
  • ISSN:
    0022-3670;1520-0485;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1