Weather-Induced Transport through a Tidal Channel Calibrated by an Unmanned Boat
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Weather-Induced Transport through a Tidal Channel Calibrated by an Unmanned Boat

Filetype[PDF-3.37 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    An unmanned surface vehicle (USV) was designed and constructed to operate continuously for covering both flood and ebb and preferably a complete tidal cycle (e.g., ~24 h) to measure the vertical profiles of horizontal flow velocity. It was applied in a tidal channel at Port Fourchon, Louisiana. A bottom-mounted ADCP was deployed for 515 days. The first EOF mode of the velocity profiles showed a barotropic type of flow that explained more than 98.2% of the variability. The second mode showed a typical estuarine flow with two layers, which explained 0.47% of the variability. Using a linear regression of the total transport from the USV with the vertically averaged velocity from the bottom-mounted ADCP, with an R-squared value of 98%, the total along-channel transport throughout the deployment was calculated. A low-pass filtering of the transport allowed for examining the impact of 76 events with cold, warm, or combined cold–warm fronts passing the area. The top seven most severe events were discussed, as their associated transports obviously stood out in the time series, indicating the importance of weather. It is shown that large-scale weather systems with frontal lines of ~1500–3000-km horizontal length scale control the subtidal transport in the area. Cold (warm) fronts tend to generate outward (inward) transports, followed by a rebound. The maximum coherence between the atmospheric forcing and the ocean response reached ~71%–84%, which occurred at about a frequency f of ~0.29 cycle per day or T of ~3.4 days in the period, consistent with the atmospheric frontal return periods (~3–7 days).
  • Keywords:
  • Source:
    Journal of Atmospheric and Oceanic Technology, 35(2), 261-279
  • DOI:
  • ISSN:
    0739-0572;1520-0426;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1