Proactive QC: A Fully Flow-Dependent Quality Control Scheme Based on EFSO
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Proactive QC: A Fully Flow-Dependent Quality Control Scheme Based on EFSO

Filetype[PDF-4.13 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Despite dramatic improvements over the last decades, operational NWP forecasts still occasionally suffer from abrupt drops in their forecast skill. Such forecast skill “dropouts” may occur even in a perfect NWP system because of the stochastic nature of NWP but can also result from flaws in the NWP system. Recent studies have shown that dropouts occur due not to a model’s deficiencies but to misspecified initial conditions, suggesting that they could be mitigated by improving the quality control (QC) system so that the observation-minus-background (O-B) innovations that would degrade a forecast can be detected and rejected. The ensemble forecast sensitivity to observations (EFSO) technique enables for the quantification of how much each observation has improved or degraded the forecast. A recent study has shown that 24-h EFSO can detect detrimental O-B innovations that caused regional forecast skill dropouts and that the forecast can be improved by not assimilating them. Inspired by that success, a new QC method is proposed, termed proactive QC (PQC), that detects detrimental innovations 6 h after the analysis using EFSO and then repeats the analysis and forecast without using them. PQC is implemented and tested on a lower-resolution version of NCEP’s operational global NWP system. It is shown that EFSO is insensitive to the choice of verification and lead time (24 or 6 h) and that PQC likely improves the analysis, as attested to by forecast improvements of up to 5 days and beyond. Strategies for reducing the computational costs and further optimizing the observation rejection criteria are also discussed.
  • Keywords:
  • Source:
    Monthly Weather Review, 145(8), 3331-3354
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1