A Diel Method of Estimating Gross Primary Production: 1. Validation With a Realistic Numerical Model of Chesapeake Bay
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Diel Method of Estimating Gross Primary Production: 1. Validation With a Realistic Numerical Model of Chesapeake Bay

Filetype[PDF-2.36 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A method for estimating gross primary production (GPP) is presented and validated against a numerical model of Chesapeake Bay that includes realistic physical and biological forcing. The method statistically fits a photosynthesis‐irradiance response curve using the observed near‐surface time rate of change of dissolved oxygen and the incoming solar radiation, yielding estimates of the light‐saturated photosynthetic rate and the initial slope of the photosynthesis‐irradiance response curve. This allows estimation of GPP with 15‐day temporal resolution. The method is applied to the output from a numerical model that has high skill at reproducing both surface and near‐bottom dissolved oxygen variations observed in Chesapeake Bay in 2013. The rate of GPP predicted by the numerical model is known, as are the contributions from physical processes, allowing the proposed diel method to be rigorously assessed. At locations throughout the main stem of the Bay, the method accurately extracts the underlying rate of GPP, including pronounced seasonal variability and spatial variability. Errors associated with the method are primarily the result of contributions by the divergence in turbulent oxygen flux, which changes sign over the surface mixed layer. As a result, there is an optimal vertical location with minimal bias where application of the method is most accurate.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Oceans, 123(11), 8411-8429
  • DOI:
  • ISSN:
    2169-9275;2169-9291;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1