Effects of reduced shoreline erosion on Chesapeake Bay water clarity
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Effects of reduced shoreline erosion on Chesapeake Bay water clarity

Filetype[PDF-4.65 MB]


  • Journal Title:
    Science of The Total Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Shoreline erosion supplies sediments to estuaries and coastal waters, influencing water clarity and primary production. Globally, shoreline erosion sediment inputs are changing with anthropogenic alteration of coastlines in populated regions. Chesapeake Bay, a prime example of such a system where shoreline erosion accounts for a large proportion of sediments entering the estuary, serves here as a case study for investigating the effects of changing sediment inputs on water clarity. Long-term increases in shoreline armoring have contributed to decreased erosional sediment inputs to the estuary, changing the composition of suspended particles in surface waters. This study examined the impact of shoreline erosion on water clarity using a coupled hydrodynamic-biogeochemical model. Experiments were conducted to simulate realistic shoreline conditions representative of the early 2000s, increased shoreline erosion, and highly armored shorelines. Together, reduced shoreline erosion and the corresponding reduced rates of resuspension result in decreased concentrations of inorganic particles, improving water clarity particularly in the lower Bay and in dry years where and when riverine sediment influence is low. This clarity improvement relaxed light limitation, which increased organic matter production. Differences between the two extreme experiments revealed that in the mid-estuary in February to April, surface inorganic suspended sediment concentrations decreased 3–7 mg L−1, while organic suspended solids increased 1–3 mg L−1. The resulting increase in the organic-to-inorganic ratio often had opposite effects on clarity according to different metrics, improving clarity in mid-Bay central channel waters in terms of light attenuation depth, but simultaneously degrading clarity in terms of Secchi depth because the resulting increase in organic suspended solids decreased the water's transparency. This incongruous water clarity effect, the spatial extent of which is defined here as an Organic Fog Zone, was present in February to April in all years studied, but occurred farther south in wet years.
  • Keywords:
  • Source:
    Science of The Total Environment, 769, 145157
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1