Spring Onset Predictability in the North American Multimodel Ensemble
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Spring Onset Predictability in the North American Multimodel Ensemble

Filetype[PDF-2.46 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • NOAA Program & Office:
  • Description:
    The predictability of spring onset is assessed using an index of its interannual variability (the “extended spring index” or SI‐x) and output from the North American Multimodel Ensemble reforecast experiment. The input data to compute SI‐x were treated with a daily joint bias correction approach, and the SI‐x outputs computed from the North American Multimodel Ensemble were postprocessed using an ensemble model output statistic approach—nonhomogeneous Gaussian regression. This ensemble model output statistic approach was used to quantify the effects of training period length and ensemble size on forecast skill. The lead time for predicting the timing of spring onset is found to be from 10 to 60 days, with the higher end of this range located along a narrow band between 35°N to 45°N in the eastern United States. Using continuous rank probability scores and skill score (SS) thresholds, this study demonstrates that ranges of positive predictability of SI‐x fall into two categories: 10–40 and 40–60 days. Using higher skill thresholds (SS equal to 0.1 and 0.2), predictability is confined to a lower range with values around 10–30 days. The postprocessing work using joint bias correction improves the predictive skill for SI‐x relative to the untreated input data set. Using nonhomogeneous Gaussian regression, a positive change in the SS is noted in regions where the skill with joint bias correction shows evidence of improvement. These findings suggest that the start of spring might be predictable on intraseasonal time horizons, which in turn could be useful for farmers, growers, and stakeholders making decisions on these time scales.
  • Source:
    Journal of Geophysical Research: Atmospheres, 123(11), 5913-5926
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26