Evaluating Satellite Sounding Temperature Observations for Cold Air Aloft Detection
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Evaluating Satellite Sounding Temperature Observations for Cold Air Aloft Detection

Filetype[PDF-2.06 MB]



Details:

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Cold Air Aloft (CAA) can impact commercial flights when cold air descends below 12,192 m (40,000 ft) and temperatures drop dramatically. A CAA event is identified when air temperature falls below −65 °C, which decreases fuel efficiency and poses a safety hazard. This manuscript assesses the performance of the National Oceanic and Atmospheric Administration Unique Combined Atmospheric Processing System (NUCAPS) in detecting CAA events using sounders on polar-orbiting satellites. We compare NUCAPS air temperature profiles with those from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) for January–March 2018. Of 1311 collocated profiles, 236 detected CAA. Our results showed that NUCAPS correctly detects CAA in 48.1% of profiles, while 17.2% are false positives and 34.7% are false negatives. To identify the reason for these detection states, we used a logistic regression trained on NUCAPS diagnostic parameters. We found that cloud cover can impact the skill even at higher vertical levels. This work indicates that a CAA-specific quality flag is feasible and may be useful to help forecasters to diagnose NUCAPS in real-time. Furthermore, the inclusion of an additional sounder data source (e.g., NOAA-20) may increase CAA forecast accuracy. Cloud scenes change rapidly, so additional observations provide more opportunities for correct detection.
  • Keywords:
  • Source:
    Atmosphere, 11(12), 1360
  • DOI:
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1