i
The formation and composition of the Mount Everest plume in winter
-
2022
-
Source: Atmospheric Chemistry and Physics, 22(12), 7995-8008
Details:
-
Journal Title:Atmospheric Chemistry and Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:Mount Everest's summit pyramid is the highest obstacle on earth to the wintertime jet-stream winds. Downwind, in its wake, a visible plume can form. The meteorology and composition of the plume are unknown. Accordingly, daily from 1 November 2020 through 31 March 2021 (151 d), we observed real-time images from a geosynchronous meteorological satellite to identify the days plumes formed. The corresponding surface and upper-air meteorological data were collected. The massif was visible on 143 d (95 %), plumes formed on 63 d (44 %) and lasted an average of 12 h. We used the upper-air data with a basic meteorological model to show the plumes formed when sufficiently moist air was drawn into the wake. We conclude the plumes were composed initially of either cloud droplets or ice particles depending on the temperature. The plumes were not composed of resuspended snow. One plume was observed to glaciate downwind. We estimated snowfall from the plumes may be significant.
-
Keywords:
-
Source:Atmospheric Chemistry and Physics, 22(12), 7995-8008
-
DOI:
-
ISSN:1680-7324
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: